Potential Theory and Nonlinear Elliptic Equations Lecture 4

I. E. Verbitsky

University of Missouri, Columbia, USA

Nankai University, Tianjing, China June 2021

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Publications

- A. Grigor'yan and I. Verbitsky, Pointwise estimates of solutions to nonlinear equations for non-local operators, Ann. Scuola Norm. Super. Pisa, 20 (2020) 721–750.
- A. Seesanea and I. Verbitsky, Finite energy solutions to inhomogeneous nonlinear elliptic equations with sub-natural growth terms, Adv. Calc. Var., 13 (2020) 53–74.
- S. Quinn and I. Verbitsky, A sublinear version of Schur's lemma and elliptic PDE, Analysis & PDE, 11 (2018) 439–466.
- Dat Tien Cao and I. Verbitsky, Nonlinear elliptic equations and intrinsic potentials of Wolff type, J. Funct. Analysis, 272 (2017) 112–165.
- Dat Tien Cao and I. Verbitsky, *Pointwise estimates of Brezis–Kamin type for solutions of sublinear elliptic equations*, *Nonlin. Analysis*, 146 (2016) 1–19.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ □ 三

Additional literature

- D. R. Adams and L. I. Hedberg, *Function Spaces and Potential Theory*, Grundlehren der math. Wissenschaften, **314**, Springer, Berlin, 1996.
- A. Grigor'yan, Heat Kernel and Analysis on Manifolds, Amer. Math.Soc./Intern. Press Studies in Adv. Math., 47, 2009.
- N. S. Landkof, Foundations of Modern Potential Theory, Grundlehren der math. Wissenschaften, 180, Springer, New York–Heidelberg, 1972.
- V. G. Maz'ya, Sobolev Spaces, with Applications to Elliptic Partial Differential Equations, 2nd revised augm. ed., Grundlehren der math. Wissenschaften, 342, Springer, Berlin, 2011.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Integral inequalities for nondecreasing nonlinearities

Theorem 10 (lower estimate)

Let $\sigma \in \mathcal{M}^+(\Omega)$, and let K be a (WMP)-kernel on Ω with constant $\mathfrak{b} \geq 1$. Let $g: [1, +\infty) \to [1, +\infty)$ be nondecreasing, continuous. If $\mathcal{A}u = K(g(u)d\sigma)$, and $u \geq \mathcal{A}u + 1 d\sigma$ -a.e., then

$$u(x) \geq 1 + \mathfrak{b} \left[F^{-1} \left(\mathfrak{b}^{-1} K \sigma(x) \right) - 1 \right],$$
 (1)

for all $x \in \Omega$ such that $\mathcal{A}u(x) + 1 \leq u(x) < +\infty$, where necessarily

$$\mathfrak{b}^{-1} \mathcal{K} \sigma(\mathbf{x}) < \mathbf{a} := \int_{1}^{+\infty} \frac{ds}{g(s)}.$$
 (2)

Remarks. 1. We will give below a proof of Theorem 10. A similar proof of Theorem 11 for noninreasing g is omitted.

2. Theorem 9 with $g(t) = t^q$, but with any h > 0 in place of 1 will be proved after that.

SQ (~

For any $t \geq 0$, we set as above,

$$\phi(t) = g(t+1)$$
 and $\psi(t) = \phi(\mathfrak{b}^{-1}t) = g(\mathfrak{b}^{-1}t+1).$ (3)

As in the iterations lemma, define the sequence $\{f_k\}_{k=0}^\infty$ on Ω by

$$f_0 := K\sigma, \qquad f_{k+1} := K\left[\left(\phi\left(f_k\right)\right) d\sigma\right].$$

We claim that, for all $k \geq 0$,

$$u \geq f_k + 1$$
 in Ω . (4)

Indeed, since $u \geq 1$, we have $u \geq A1 + 1 = K\sigma + 1$, and consequently

$$u \geq \mathcal{A}u + 1 \geq f_0 + 1,$$

that is, (4) holds for $\mathbf{k} = \mathbf{0}$. If (4) is already proved for some $\mathbf{k} \ge \mathbf{0}$,

$$u \geq \mathcal{A}u + 1 \geq K \left[\left(\phi \left(f_k \right) \right) d\sigma \right] + 1 = f_{k+1} + 1,$$

which completes the proof of (4).

590

(continuation)

Consider now the sequence $\{\psi_k\}_{k=0}^{\infty}$ on $[0,\infty)$ so that $\psi_0(t):=t$ and

$$\psi_{k+1}(t) := \int_0^t \psi \circ \psi_k(s) ds.$$
 (5)

By the iterations lemma, we have, for all $x \in \Omega$ and $k \ge 0$,

$$f_{k}(x) \geq \psi_{k}(f_{0}(x)),$$

which together with (4) yield

$$u\left(x
ight)\geq\psi_{k}\left(\kappa\sigma\left(x
ight)
ight)+1$$
 for all $x\in\Omega.$

By (3), the function ψ is non-decreasing and $\psi \ge 1$, which implies that $\psi_{k+1}(t) \ge \psi_k(t)$ for all $t \ge 0$. Indeed, for k = 0 it follows from

$$\psi_1(t) = \int_0^t \psi(t) dt \ge t = \psi_0(t),$$

and $\psi_k \ge \psi_{k-1} \Longrightarrow \psi_{k+1} \ge \psi_k$ by (5) and the monotonicity of ψ_{\bullet}

(continuation) We now set

$$\psi_{\infty}(t) := \lim_{k \to \infty} \psi_k(t).$$

Hence, letting $k \to \infty$ in the preceding estimates, we deduce

$$u(x) \ge \psi_{\infty} (K\sigma(x)) + 1$$
 for all $x \in \Omega$. (6)

Let us fix $x \in \Omega$ such that $u(x) < +\infty$. It follows from (6) that

$$t_0:=K\sigma(x)<+\infty$$
 and $\psi_\infty\left(t_0
ight)<\infty.$

Without loss of generality we may assume that $t_0 > 0$ since in the case $K\sigma(x) = 0$ the desired estimates are obvious. We see that the function ψ_{∞} is finite on $[0, t_0]$, positive on $(0, t_0]$, and by the monotone convergence theorem, satisfies the integral equation

$$\psi_{\infty}(t) = \int_0^t \psi \circ \psi_{\infty}(s) \, ds, \quad 0 \le t \le t_0. \tag{7}$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(continuation)

Hence, ψ_∞ is continuously differentiable on $[0, t_0]$ and satisfies the ODE

$$\frac{d\psi_{\infty}}{dt} = \psi(\psi_{\infty}(t)), \quad \psi_{\infty}(0) = 0.$$
(8)

Setting

$$\Psi(\xi) = \int_0^{\xi} \frac{ds}{\psi(s)} = \mathfrak{b} F(1 + \mathfrak{b}^{-1}\xi)$$
(9)

and observing that by the Chain Rule and (8),

$$\frac{d\Psi(\psi_{\infty})(t)}{dt} = \left(\frac{d\Psi}{dt}\circ\psi_{\infty}\right)(t) \ \frac{d\psi_{\infty}}{dt} = 1,$$

we obtain that, for any $t \in [0, t_0]$,

$$\Psi(\psi_{\infty}(t)) = t.$$
⁽¹⁰⁾

3

590

Proof of Theorem 10 (continuation)

It follows from (9) with $\xi = \psi_{\infty}(t_0)$, and (10) with $t = t_0$, that

$$\Psi\left(\psi_{\infty}(t_0)\right) = F(1 + \mathfrak{b}^{-1}\psi_{\infty}(t_0)) = \mathfrak{b}^{-1}t_0.$$
(11)

Since all the values of F must be contained in the interval [0, a), we deduce from (11) that

$$\mathfrak{b}^{-1}t_0 < a,$$

where $t_0 = K\sigma(x)$. This is equivalent to the necessary condition (2). Finally, we obtain from (11) that

$$\psi_{\infty}(t_0) = \mathfrak{b}\left[F^{-1}\left(\mathfrak{b}^{-1}t_0\right) - 1\right].$$

Substituting this into (6), that is $u(x) \ge \psi_{\infty}(t_0) + 1$, yields $u(x) \ge \mathfrak{b} \left[F^{-1}(\mathfrak{b}^{-1}t_0) - 1 \right] + 1$. This completes the proof of (1).

5900

- コ ト - 4 戸 ト - 4 戸 ト - 三

Nonlinear inequalities $u \geq K(u^q d\sigma) + h$

Let $\sigma \in \mathcal{M}^+(\Omega)$, and let K be a lower semicontinuous kernel. Consider inequalities

$$+\infty > u(x) \ge K(u^q d\sigma)(x) + h(x) \quad d\sigma$$
-a.e. in Ω ,

in the case q > 0. Here h is a positive lower semicontinuous function in Ω . In particular, $\inf_F h > 0$ for every compact set $F \subset \Omega$.

We also consider inequalities

$$0 < u(x) \leq -K(u^q d\sigma)(x) + h(x) \quad d\sigma$$
-a.e. in Ω ,

in the case q < 0.

We use the notation

$$\Omega' = \{x \in \Omega: h(x) < +\infty.\}$$

Nonlinear inequalities $u \geq K(u^q d\sigma) + h$ (continuation)

In most applications, $K = G^{\Omega}$ is a positive Green's function, and h is a positive superharmonic function, i.e.,

 $h= \mathsf{G} \mu + h_0 > 0, \quad \mu \in \mathcal{M}^+(\Omega), \quad h \ge 0, \quad \Delta h_0 = 0,$

where h_0 is the largest harmonic minorant of h.

The case where h = const > 0 was considered above. To treat the general case, along with the kernel K(x, y), we will consider the modified kernel

$$\widetilde{K}(x,y) = rac{K(x,y)}{h(x) h(y)}$$
 for $x, y \in \Omega'$.

Notice that if $+\infty > u \ge K(u^q d\sigma) + h d\sigma$ -a.e., then obviously

$$\sigma(\Omega\setminus\Omega')=0.$$

SQ (V

Domination principle

Remark. \widetilde{K} satisfies (WMP) in Ω' provided K satisfies the following weak form of the domination principle (WDP) in Ω :

Given a lower semicontinuous function h in Ω ,

 ${\it K}\mu(x)\leq {\it M}\,h(x),\;\forall\,x\in{
m supp}(\mu)\implies {\it K}\mu(x)\leq{\mathfrak b}\,{\it M}\,h(x),\;\forall\,x\in\Omega$

for any compactly supported $\mu \in \mathcal{M}^+(\Omega)$ such that $K\mu$ is bounded (or for any μ with finite energy), and any constant M > 0.

This property is sometimes called a \mathfrak{b} -dilated domination principle. The classical domination principle with $\mathfrak{b} = 1$ holds for Green's kernels K = G associated with a large class of local and non-local operators, and any superharmonic h > 0. In the case $h = K\nu + a$ where $\nu \in \mathcal{M}^+(\Omega)$ and $a \ge 0$ is a constant, it is called the *complete maximum principle*.

SQ (V

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Example: quasi-metric kernels

A useful example is given by **quasi-metric kernels** K on $\Omega \times \Omega$ (see [Kalton-Verbitsky 1999], [Hansen 2006], [Frazier-Nazarov-V. 2014]):

$$K(x,y)=rac{1}{d(x,y)},\quad x,y\in\Omega,$$

where d is a quasi-metric, i.e., $d: \Omega \times \Omega \rightarrow [0, +\infty)$, $d \not\equiv 0$, d(x, y) = d(y, x), and there exists a quasi-metric constant $\varkappa \geq \frac{1}{2}$ such that the quasi-triangle inequality holds:

$$d(x,y) \leq \varkappa [d(x,z) + d(y,z)], \quad \forall x,y,z \in \Omega.$$

Remark. $d(x, y) \approx \rho(x, y)^{\beta}$ for some $\beta = \beta(\varkappa)$, where ρ is a metric [Aoki-Rolewicz 1942/57] for **linear** spaces, [Heinonen 2001] in general.

Lemma (WMP for quasi-metric kernels)

Suppose **K** is a quasi-metric kernel in Ω with quasi-metric constant \varkappa . Then **K** satisfies the **(WMP)** with constant $\mathfrak{b} = 2\varkappa$.

Example: Quasi-metric kernels

Many kernels K are quasi-metrically modifiable: the modified kernel $\widetilde{K}(x, y) = \frac{K(x, y)}{h(x) h(y)}$ (with some h > 0) is quasi-metric (with some modifier h > 0). True for $K = G^{\Omega}$ in bounded uniform domains (in particular Lipschitz and NTA domains).

Lemma (Hansen 2005)

Let $\Omega \subset \mathbb{R}^n$ $(n \geq 3)$ be a bounded uniform domain (satisfies the interior corkscrew condition and the Harnack chain condition. Define a superharmonic modifier $m(x) = \min[1, G^{\Omega}(x, x_0)]$, where $x_0 \in \Omega$ is a fixed pole. Then the modified Green's kernel

$$\widetilde{G}^{\Omega}(x,y) = rac{G^{\Omega}(x,y)}{m(x) m(y)}, \quad x,y \in \Omega,$$

is a quasi-metric kernel (with a constant \varkappa independent of x_0).

Example: quasi-metric kernels

For $w \in \Omega$, let $\Omega_w = \{x \in \Omega: K(x, w) < +\infty\}$. Then \widetilde{K} is quasi-metric in Ω_w if $h = K\nu$, where ν is supported at a single point w, i.e., h(x) = c K(x, w), c > 0. The following lemma yields the (WDP) for quasi-metric kernels.

Lemma (Frazier-Nazarov-Verbitsky 2014)

Suppose K is a quasi-metric kernel in Ω with constant \varkappa . Then

$$\mathcal{K}_w(x,y) = rac{\mathcal{K}(x,y)}{\mathcal{K}(x,w) \, \mathcal{K}(y,w)}, \quad x,y \in \Omega_w,$$

is a quasi-metric kernel on Ω_w with quasi-metric constant $4\varkappa^2$. In particular, K_w satisfies the (WMP) in Ω_w with constant $\mathfrak{b} = 8\varkappa^3$.

The lemma follows from the Ptolemy inequality in quasi-metric geometry,

 $d(x,y) d(z,w) \leq 4\varkappa^2 [d(x,w) d(y,z) + d(x,z) d(y,w)], \ \forall x,y,z,w.$

SQ (~

Example: quasi-metric kernels

Recall the following

Lemma (WMP for modified kernels)

Suppose K is a kernel in Ω which satisfies the (WDP). Suppose $h = K\nu \not\equiv +\infty$ where $\nu \in \mathcal{M}^+(\Omega)$. Then the modified kernel \widetilde{K} satisfies the (WMP) in Ω' with the same constant \mathfrak{b} . In particular, if the (WDP) holds for K with $\mathfrak{b} = 1$, then \widetilde{K} satisfies the strong maximum principle in Ω' .

Lemma (WMP for modified quasi-metric kernels)

Let K be a quasi-metric kernel on Ω . Let $h = K\nu$ where $\nu \in \mathcal{M}^+(\Omega)$, $h \not\equiv +\infty$. Then K satisfies the (WDP), and \widetilde{K} the (WMP) in Ω' .

We are now ready to prove Theorem 9 using Theorem 10/11 (in the special case $g(t) = t^q$) and the (WMP) for \tilde{K} , or the (WDP) for K.

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Reduction to the case $h \equiv 1$: Proof of Theorem 9

Remark. In the **local case** (Theorems 3-5), we used instead the **Doob transform**.

Suppose first q > 0. Fix $x \in \Omega$ so that $u(x) < \infty$. Then $x \in \Omega'$, i.e., $h(x) < +\infty$, and $d\sigma$ -a.e. WLOG we assume $\sigma(\Omega \setminus \Omega') = 0$. Let $\Omega = \bigcup \Omega_m$ be an exhaustion of Ω : $\Omega_m \uparrow \Omega$ are compact, and $\Omega' = \bigcup \Omega'_m$. Let $d\sigma_m = \chi_{\Omega_m} d\sigma$ where $\operatorname{supp}(\sigma_m) \subseteq \Omega_m$. Setting

$$v(x) := \frac{u(x)}{h(x)}, \quad x \in \Omega',$$

we see that $\boldsymbol{\nu}$ satisfies the inequality

$$v(x) \geq \widetilde{K}(v^q d \widetilde{\sigma}_m)(x) + 1 \quad d \widetilde{\sigma}_m - ext{a.e. in } \Omega_m,$$

where $ilde{\sigma}_m \in \mathcal{M}^+(\Omega_m)$ is defined by

$$d\tilde{\sigma}_m = h^{1+q} \, d\sigma_m.$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Notice that \tilde{K} satisfies the (WMP) in Ω' by the Lemma. By Theorem 10 with \tilde{K} and $\tilde{\sigma}_m$ in place of K and σ , it follows that v satisfies the corresponding lower bounds

$$\mathbf{v}(\mathbf{x}) \geq \left\{ 1 + \mathfrak{b} \Big[\Big(1 + rac{(1-q)\,\widetilde{K}\widetilde{\sigma}_m(\mathbf{x})}{\mathfrak{b}} \Big)^{rac{1}{1-q}} - 1 \Big]
ight\}, \quad \mathbf{x} \in \Omega_m,$$

where in the case q>1 necessarily

$$\widetilde{K}\widetilde{\sigma}_m(x) < rac{\mathfrak{b}}{q-1}, \quad x \in \Omega_m.$$

Letting $m
ightarrow \infty$ we deduce by the monotone convergence theorem

$$m{v}(x) \geq \left\{1 + b \left[\left(1 + rac{(1-q) \, \widetilde{K} \widetilde{\sigma}(x)}{b}
ight)^{rac{1}{1-q}} - 1
ight]
ight\}, \quad x \in \Omega,$$

where in the case q > 1 necessarily

$$\widetilde{K}\widetilde{\sigma}(x) < rac{\mathfrak{b}}{q-1}, \quad x\in \Omega; \quad d\widetilde{\sigma}:=h^{1+q}\,d\sigma.$$

Passing back from $(v, \tilde{K}, \tilde{\sigma})$ to (u, K, σ) , we deduce the main estimates of Theorem 9 (in the case q > 0), provided $K(u^q d\sigma)(x) \le u(x) < \infty$:

$$u(x) \geq h(x) \left\{ 1 + \mathfrak{b} \left[\left(1 + rac{(1-q) \, \kappa(h^q d\sigma)(x)}{\mathfrak{b} \, h(x)}
ight)^{rac{1}{1-q}} - 1
ight]
ight\},$$

where in the case q>1 necessarily $h(x)<\infty$ and

$$K(h^q d\sigma)(x) < \frac{\mathfrak{b}}{q-1} h(x).$$

Notice that in $K(h^q d\sigma)(x)$ we can integrate over Ω in place of Ω' since $\sigma(\Omega \setminus \Omega') = 0$.

In the case q < 0, the main estimate and necessary condition of Theorem 9 are deduced in a similar way from Theorem 11 if, for $x \in \Omega$, $0 < h(x) < +\infty$ and $0 < u(x) \leq -K(u^q d\sigma)(x) + h(x)$.

Э.

SQA

Some applications to non-local operators, measure coefficients, unbounded solutions

1. Convolution equations on \mathbb{R}^n .

Let K(x) = k(|x|) be an arbitrary radial non-decreasing kernel on \mathbb{R}^n . Then K satisfies the (WMP) [Ugaheri 1950], and all the estimates hold for positive solutions to the convolution equations with monotone nonlinearity $g: [1, \infty) \to (0, \infty]$,

$$u = k \star g(u^q d\sigma) + 1, \quad q \in \mathbb{R} \setminus \{0\}, \text{ on } \mathbb{R}^n,$$

and the homogeneous equation $u = k \star (u^q d\sigma)$ in the sublinear case $g(t) = t^q$, 0 < q < 1.

2. Parabolic equations on domains Ω , or Riemannian manifolds,

$$\partial_t u - \Delta u = \sigma u^q + \mu, \quad q \in \mathbb{R} \setminus \{0\}.$$

3. *Elliptic equations* with fractional Laplacian on domains $\Omega \subseteq \mathbb{R}^n$, $0 < \alpha < n$, or Riemannian manifolds, with positive Green's function,

$$(-\Delta)^{\frac{\alpha}{2}}u = \sigma u^q + \mu, \quad \forall q \in \mathbb{R} \setminus \{0\}.$$

Sublinear weighted norm inequalities

Key weighted norm inequalities $K : \mathcal{M}^+(\Omega) \to L^q(\Omega, d\sigma)$ of (1, q)-type in the case 0 < q < 1 (non-classical case):

$$\|\boldsymbol{K}\boldsymbol{\nu}\|_{\boldsymbol{L}^{q}(\Omega,\boldsymbol{d}\sigma)} \leq \boldsymbol{C} \|\boldsymbol{\nu}\|, \quad \forall \boldsymbol{\nu} \in \mathcal{M}^{+}(\Omega), \quad (12)$$

where $\|\nu\|_{\mathcal{M}^+(\Omega)} = \nu(\Omega)$, and K is the integral operator with nonnegative (WMP) kernel,

$$K\nu(x) = \int_{\Omega} K(x,y) \, d\nu(y).$$

Weak-type weighted norm inequalities of (1, q)-type, $0 < q \leq 1$:

$$\|\boldsymbol{K}\boldsymbol{\nu}\|_{\boldsymbol{L}^{q,\infty}(\Omega,\boldsymbol{d}\sigma)} \leq \boldsymbol{C} \,\|\boldsymbol{\nu}\|, \quad \forall \boldsymbol{\nu} \in \mathcal{M}^{+}(\Omega), \tag{13}$$

are of some interest as well.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Related sublinear inequalities of (1, q)-type

One can use equivalently (1, q)-type inequalities with $L^1(\Omega)$ in place of $\mathcal{M}^+(\Omega)$, for kernels K with (WMP):

$$\|\mathbf{K}\mathbf{f}\|_{L^q(\Omega,d\sigma)} \leq \mathbf{C} \,\|\mathbf{f}\|_{L^1(\Omega)}, \quad \forall \mathbf{f} \in L^1(\Omega). \tag{14}$$

If $K = G^{\Omega}$ is the Dirichlet Green kernel, then (14) is equivalent to

$$\|\phi\|_{L^{q}(\Omega, d\sigma)} \leq C \|\Delta\phi\|_{L^{1}(\Omega)}, \qquad (15)$$

 $\forall \phi$ such that $-\Delta \phi \geq 0$ and $\Delta \phi \in L^1(\Omega)$, where $\phi|_{\partial\Omega} = 0$. Estimate (12), or (15), is key to characterizing all positive weak solutions $u \in L^q_{loc}(\Omega, \sigma)$ to the sublinear Dirichlet problem $-\Delta u = \sigma u^q$. For finite energy solutions $u \in \dot{W}^{1,2}_0(\Omega)$ we use instead of (15) a $\dot{W}^{1,2}_0(\Omega) \rightarrow L^{1+q}(\Omega, d\sigma)$ weighted norm inequality:

$$\|\phi\|_{L^{1+q}(\Omega,d\sigma)} \leq C \|\nabla\phi\|_{L^2(\Omega,dx)}, \quad \forall \phi \in \dot{W}^{1,2}_0(\Omega).$$

Notice that here again 1 + q < 2 (non-classical case).

Sublinear integral equations

The study of (1, q) weighted norm inequalities for for 0 < q < 1 is motivated by applications to sublinear elliptic PDE of the type

$$\begin{cases} -\Delta u = \sigma \ u^q + \mu & \text{in } \Omega, \\ u = \nu & \text{on } \partial \Omega, \end{cases} \iff \begin{cases} u = K(u^q d\sigma) + f & \text{in } \Omega, \\ f = K\mu + P\nu, \end{cases}$$

where u > 0; $\mu, \sigma \in \mathcal{M}^+(\Omega)$; $\nu \in \mathcal{M}_b^+(\partial \Omega)$; $P\nu$ harmonic extension. Here $\Omega \subseteq \mathbb{R}^n$ is a domain with non-trivial Green's function $K = G^{\Omega}$.

The only restrictions imposed on the kernel **K**:

(b) **K** satisfies the weak maximum principle (WMP).

Here K can be a Green operator associated with $-\Delta$, or a more general elliptic operator, including $(-\Delta)^{\frac{\alpha}{2}}$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

《曰》《母》《말》《말》 []

Conditions on kernels of integral operators

Let $K: \Omega \times \Omega \rightarrow [0, +\infty]$ be a nonnegative lower semicontinuous kernel.

Definition

A kernel K is quasi-symmetric (QS) if there exists a constant a > 0 such that

$$a^{-1} \mathcal{K}(x, y) \leq \mathcal{K}(y, x) \leq a \mathcal{K}(x, y), \quad x, y \in \Omega.$$
 (16)

Definition

 $K \ge 0$ is *degenerate* with respect to $\sigma \in \mathcal{M}^+(\Omega)$ if there exists a set $A \subset \Omega$ with $\sigma(A) > 0$ such that

$$K(\cdot, y) = 0$$
 $d\sigma$ -a.e. $\forall y \in A$.

Otherwise, K is called non-degenerate with respect to σ .

See [Sinnamon 2005] in the context of Schur's lemma for positive operators $T: L^p \to L^q$ in the case 1 < q < p.

SQ (V

Weak and strong maximum principles

If $\nu \in \mathcal{M}^+(\Omega)$, then by $K\nu$ and $K^*\nu$ we denote the potentials

$$\kappa
u(x) = \int_{\Omega} \kappa(x, y) \, d
u(y), \quad \kappa^*
u(x) = \int_{\Omega} \kappa(y, x) \, d
u(y), \quad x \in \Omega.$$

Recall the following

Definition

K satisfies the weak maximum principle (WMP) if, for any $\nu \in \mathcal{M}^+(\Omega)$, there exists a constant $\mathfrak{b} \geq 1$ so that

$${\it K}
u(x)\leq 1, \ \ orall x\in {
m supp}(
u)\Longrightarrow {\it K}
u(x)\leq {\mathfrak b}, \ \ orall x\in \Omega.$$

If b = 1, then K satisfies the strong maximum principle (MP).

Remark. Green's kernels of many second-order elliptic differential operators are **(QS)** & **(WMP)** [Ancona 2002].

June 2021 25 / 40

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Potential theory Capacities and contents

Let $F \subset X$ be a compact set. For the kernel $K : X \times Y \rightarrow [0, +\infty]$, consider several different related notions of capacity/content:

$$\operatorname{cap}_0(F) = \sup \Big\{ \mu(F) \colon \ \mu \in \mathcal{M}^+(F), \quad \mathcal{K}^*\mu(y) \leq 1, \ \forall \ y \in Y \Big\}, \ \operatorname{cont}(F) = \inf \Big\{ \lambda(Y) \colon \ \lambda \in \mathcal{M}^+(Y), \quad \mathcal{K}\lambda(x) \geq 1, \ \forall \ x \in F \Big\}.$$

These two notions in fact coincide [Fuglede 1965] via the **Minimax Theorem**. For $X = Y = \Omega$, the Wiener capacity is defined by

$$\operatorname{cap}(F) = \sup \Big\{ \mu(F) \colon \mu \in \mathcal{M}^+(F); \ K^*\mu(y) \leq 1, \, \forall \, y \in \operatorname{supp}(\mu) \Big\}.$$

Note that $cap_0(F) \leq cap(F) \leq b cap_0(F)$, if K is a (WMP) kernel for the upper estimate. The Wiener capacity is most useful if K is (QS).

□▶ ▲□▶ ▲ ■▶ ▲ ■ … のへで

Weak-type (1, q)-inequality for integral operators

Theorem 12 (Quinn-Verbitsky 2018)

Let $\sigma \in \mathcal{M}^+(\Omega)$, and $0 < q \leq 1$. Then the following statements are equivalent:

1 There exists a constant $\varkappa_w > 0$ such that

 $\|\mathbf{K}
u\|_{L^{q,\infty}(\sigma)} \leq \varkappa_{\mathbf{w}}\|
u\|, \quad \forall
u \in \mathcal{M}^+(\Omega).$

2 There exists a constant c > 0 such that

 $\sigma(F) \leq c (\operatorname{cap}_0(F))^q, \quad \forall \text{ compact sets } F \subset \Omega.$

3 The condition $K\sigma \in L^{\frac{q}{1-q},\infty}(\sigma)$ holds (for 0 < q < 1), provided K satisfies (QS) & (WMP).

Remark. Condition (2): V.Maz'ya 1962; if q > 1, for quasi-metric kernels enough $\sigma(B(x,r)) \leq c r^{q}$; (D.Adams 1972), Riesz kernels.

Sublinear Schur's Lemma

Theorem 13 (Quinn-Verbitsky 2018)

Let $\sigma \in \mathcal{M}^+(\Omega)$, and 0 < q < 1. Let $K \ge 0$ be a (QS) & (WMP) kernel. Then the following statements are equivalent:

1 There exists a constant $\varkappa > 0$ such that

$$\|\mathbf{K}\nu\|_{L^q(\Omega,\sigma)} \leq \varkappa \|\nu\|, \quad \forall \nu \in \mathcal{M}^+(\Omega).$$
 (17)

2 There exists a non-trivial supersolution $u \ge K(u^q d\sigma)$, $u \in L^q(\Omega, d\sigma)$.

3 There exists a positive solution $u = K(u^q d\sigma)$, $u \in L^q(\Omega, d\sigma)$, provided K is non-degenerate with respect to σ .

Remarks. 1. The implication $(1) \Longrightarrow (2)$ in Theorem 13 holds for any K. **2.** The implications (2) or $(3) \Longrightarrow (1)$ generally fail without the **(WMP)**. **3.** A minimal solution $u = \lim u_j$ is constructed *explicitly* by iterations: $u_{j+1} = K(u_j^q d\sigma), u_{j+1} \ge u_j, u_0 = c(K\sigma)^{\frac{1}{1-q}}, c$ is a small constant. **4.** E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations U = 28 / 40

Gagliardo's lemma

Sufficiency of (17): The implication $(1) \Longrightarrow (2)$ in Theorem 13 is a special case of Gagliardo's lemma for more general nonlinear maps.

Lemma (Gagliardo 1965)

Let 0 < q < 1 and $\sigma \in \mathcal{M}^+(\Omega)$. Let $K \ge 0$ be a kernel. Suppose the (1, q)-weighted norm inequality (17) holds. Then for every $\epsilon > 0$, there is a positive supersolution $u \in L^q(\Omega, \sigma)$ such that

 $u \geq K(u^q d\sigma)$

with $\|\boldsymbol{u}\|_{L^q(\Omega,\sigma)}^q \leq (1+\epsilon)^{\frac{1}{1-q}} \varkappa^{\frac{q}{1-q}}$.

Remarks. 1. In general, the Lemma fails if $\epsilon = 0$. 2. For non-degenerate K, in fact $\epsilon = 0$, and there exists $u = K(u^q \sigma)$. 3. The converse fails without the (WMP), even for symmetric positive kernels, for any $\epsilon > 0$.

SQ (V

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □

Key weak-type (1, 1) lemma

Necessity of (17): To prove $(2) \Longrightarrow (1)$ in Theorem 13, we appeal to Potential Theory. We use some results due to [Fuglede 1960]. Suppose WLOG that $u > 0 \ d\sigma$ -a.e., $u \ge K(u^q \sigma)$, and $u \in L^q(\Omega, \sigma)$. We will need the following key weak-type (1, 1)-inequality.

Lemma (Quinn-Verbitsky 2018)

Let $K \ge 0$ be a symmetric (WMP) kernel with constant \mathfrak{b} . Suppose $\omega \in \mathcal{M}^+(\Omega)$ is absolutely continuous with respect to the Wiener capacity. Then

$$\left\|\frac{\kappa\nu}{\kappa\omega}\right\|_{L^{1,\infty}(\Omega,\omega)} \leq \mathfrak{b}\|\nu\|, \quad \forall\nu\in\mathcal{M}^+(\Omega),$$
(18)

Remarks. 1. In (18) and similar expressions below, we adapt the usual real variables convention $\frac{0}{0} = 0$. 2. The lemma holds for (QS) & (WMP) kernels with a different constant.

- B

SQ (V

- ロ ト - 4 同 ト - 4 回 ト

Proof of the weak-type (1, 1) lemma

Proof of the lemma: Let t > 0. Define $E_t := \{x \in \Omega : \frac{K\nu(x)}{K\omega(x)} > t\}$. We claim that compact subsets $F \subset E_t$ have finite capacity. This requires that K(x, x) > 0 on E_t (K is strictly positive on E_t). Let $A: = \{x \in \Omega : K(x, x) = 0\}$. To verify that $A \cap E_t = \emptyset$, notice that by the (WMP), we have that, for all $x \in A$,

$$K\delta_x(x) = 0 \Longrightarrow K\delta_x(y) = 0, \ \forall y \in \Omega.$$

Thus, K(x, y) = 0 on $A \times \Omega$. It follows that, for any $\nu \in \mathcal{M}^+(\Omega)$, $K\nu(x) = 0$ for $x \in A$. Using the convention $\frac{0}{0} = 0$, we see that $\frac{K\nu(x)}{K\omega(x)} = 0$ for all $x \in A$. Hence, $E_t \cap A = \emptyset$ as claimed. This proves that indeed K(x, x) > 0 on E_t .

 $\mathcal{A} \mathcal{A} \mathcal{A}$

《曰》《問》《臣》《臣》 (曰)

Proof of the weak-type (1, 1) lemma

(continuation)

Let $F \subset \Omega$ be a compact set. Assuming that K(x, x) > 0 on F, by [Fuglede 1960], we can find an equilibrium measure $\mu \in \mathcal{M}^+(F)$ such that $K\mu \ge 1$ q.e. on F and $K\mu \le 1$ on $\operatorname{supp}(\mu) \subseteq F$. Thus, if $M := \{x \in F \mid K\mu(x) \le 1\}$ it follows that $\mu(M) = 0$ since μ

Thus, if $N := \{x \in F : K\mu(x) < 1\}$, it follows that $\omega(N) = 0$, since ω is absolutely continuous with respect to capacity.

Moreover, by the **(WMP)**, we have

$${\sf K}\mu\leq 1 ext{ on supp}(\mu)\Longrightarrow {\sf K}\mu\leq {\mathfrak b} ext{ on } \Omega.$$

From this, since $\frac{\kappa_{\nu}}{t} > \kappa_{\omega}$ on **F**, we deduce the crucial estimate

$$egin{aligned} &\omega(F) \leq \int_F \kappa \mu \, d\omega = \int_F \kappa \omega_F \, d\mu \ &\leq \int_F rac{\kappa
u}{t} \, d\mu = rac{1}{t} \int_\Omega \kappa \mu \, d
u \ &\leq rac{1}{t} \int_\Omega \mathfrak{b} \, d
u = rac{\mathfrak{b}}{t} \|
u\|. \end{aligned}$$

ヘロト 4回 ト 4回 ト 4回 ト ・ 回 ・ クタマ

Proof of the weak-type (1, 1) lemma (continuation)

As verified above, on every compact set $F \subset E_t$, the kernel K is *strictly positive*, that is, K(x, x) > 0 on F. Therefore we have

$$\omega(F) \leq rac{\mathfrak{b}}{t} \|
u\|.$$

Taking the supremum over all such compact sets \boldsymbol{F} , we conclude

$$\omega(E_t) \leq rac{\mathfrak{b}}{t} \|
u\|,$$

for all t > 0, where

$$E_t := \{x \in \Omega \colon \frac{\kappa \nu(x)}{\kappa \omega(x)} > t\}.$$

This establishes the desired weak-type (1, 1) estimate.

June 2021 33 / 40

SQ (V

(口) (同) (三) (三)

Lemma (infinity sets)

Let **F** be a compact set. If $\mu \in \mathcal{M}^+(F)$, $\mu \not\equiv 0$, and cap(F) = 0, then $K^*\mu = +\infty \ d\mu - a.e$ in **F**.

Proof: Set

$$E = \{x \in F : K^*\mu(x) < +\infty\}.$$

Notice that $E = \bigcup_{n=1}^{\infty} F_n$, where $F_n = \{x \in F : K^* \mu(x) \leq n\}$ is a closed set by the lower semicontinuity of K, and consequently is a compact subset of F. In particular, E is a Borel set. Suppose that $\operatorname{cap}(F) = 0$. Then $\operatorname{cap}(F_n) = 0$, and hence $\mu(F_n) = 0$, for every $n = 1, 2, \ldots$, in view of the definition of $\operatorname{cap}(F_n)$. It follows that

$$\mu(E) \leq \sum_{n=1}^{\infty} \mu(F_n) = 0.$$

This proves that $K^*\mu = +\infty \ d\mu$ -a.e. on F.

(continuation)

Lemma (absolute continuity w/r to capacity)

Let q > 0. Suppose $\sigma \in \mathcal{M}^+(\Omega)$, and $K^*(u^q \sigma) \leq u \, d\sigma$ -a.e., where $\int_F u^q \, d\sigma < +\infty$ for every compact set $F \subset \Omega$. Then $d\omega := u^q \, d\sigma$ is absolutely continuous w/r to capacity: $\operatorname{cap}(F) = 0 \Longrightarrow \omega(F) = 0$. If in addition $u > 0 \, d\sigma$ -a.e. on F, then $\operatorname{cap}(F) = 0 \Longrightarrow \sigma(F) = 0$.

Proof: Suppose **F** is a compact set subset of Ω . Since $K^*\omega \leq u \quad d\sigma$ -a.e., we deduce

$$\int_{F} (K^* \omega)^q \, d\sigma \leq \int_{F} u^q d\sigma = \omega(F) < \infty.$$

Hence $\sigma(\{x \in F : K^*\omega = +\infty\}) = 0$. Since ω is absolutely continuous with respect to σ , it follows that $\omega(\{x \in F : K^*\omega = +\infty\}) = 0$. If cap(F) = 0, then by the previous lemma $\omega(F) = 0$. This clearly yields $\sigma(F) = 0$, unless $u = 0 \ d\sigma$ -a.e. on F.

(continuation)

We can now complete the proof of Theorem 13. WLOG we may assume that K is symmetric. Let $u \in L^q(\Omega, \sigma)$ be a positive supersolution, and let $d\omega := u^q d\sigma$. By the Lemma, ω is absolutely continuous with respect to capacity. Suppose $\nu \in \mathcal{M}^+(\Omega)$. If $\nu(\Omega) = +\infty$, there is nothing to prove. In the case that $\nu(\Omega) < +\infty$, we can normalize the measure and assume WLOG that $\nu(\Omega) = 1$.

Since u is a positive supersolution, we have $(K\omega)^q d\sigma \leq d\omega$. We estimate, for any $\beta > 0$,

$$\begin{split} \int_{\Omega} (K\nu)^{q} d\sigma &= \int_{\Omega} \left(\frac{K\nu}{u} \right)^{q} u^{q} d\sigma \leq \int_{\Omega} \left(\frac{K\nu}{K\omega} \right)^{q} d\omega \\ &= q \int_{0}^{\beta} \omega \left(\left\{ x \in \Omega \colon \frac{K\nu(x)}{K\omega(x)} > t \right\} \right) t^{q-1} dt \\ &+ q \int_{\beta}^{\infty} \omega \left(\left\{ x \in \Omega \colon \frac{K\nu(x)}{K\omega(x)} > t \right\} \right) t^{q-1} dt \\ &= I + II. \end{split}$$

(continuation)

We first estimate term I: clearly, $I \leq q\omega(\Omega) \int_0^\beta t^{q-1} dt = \beta^q \omega(\Omega)$. By the key weak-type (1, 1) lemma, we have

$$\omega\left(\left\{x\in\Omega\colon\frac{\kappa\nu(x)}{\kappa\omega(x)}>t\right\}\right)\leq\frac{h\nu(\Omega)}{t}=\frac{h}{t}.$$

Consequently, $H \leq \frac{q}{1-q} \mathfrak{b} \beta^{q-1}$. Setting $\beta = \frac{\mathfrak{b}}{\omega(\Omega)}$, we deduce

$$\int_{\Omega} (K\nu)^{q} \, d\sigma \leq \frac{\mathfrak{b}^{q}}{1-q} \, \omega(\Omega)^{1-q}.$$

Dropping the restriction $\nu(\Omega) = 1$, and recalling that $d\omega = u^q d\sigma$, we obtain the desired inequality for any $\nu \in \mathcal{M}^+(\Omega)$,

$$\int_{\Omega} (K\nu)^{q} \, d\sigma \leq \frac{\mathfrak{b}^{q}}{1-q} \left(\int_{\Omega} u^{q} \, d\sigma \right)^{1-q} \nu(\Omega)^{q}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Proof of Theorem 13 (continuation)

Remark. The proof yields that (17) holds with $\varkappa = \frac{\mathfrak{b}}{(1-q)^{\frac{1}{q}}} \|u\|_{L^q(\Omega,\sigma)}^{1-q}$ for **symmetric** kernels K. For **(QS)** kernels, we use a symmetrized kernel $\frac{K+K^*}{2}$ to deduce a similar estimate where \varkappa depends also on the quasi-symmetric constant a > 0 in condition (16).

In the next lemma, we give some sufficient/necessary conditions for $\varkappa < \infty$ in (17) in terms of Lorentz spaces $L^{s,r}(\Omega, \sigma)$ with quasi-norm

$$\|f\|_{L^{s,r}(\Omega,\sigma)}^{r}=s\int_{0}^{\infty}\left[t^{s}\sigma\left(x\in\Omega\colon|f(x)|>t\right)\right]^{\frac{r}{s}}\frac{dt}{t}<\infty.$$

Here $L^{s,s}(\Omega,\sigma) = L^s(\Omega,\sigma)$ and $L^{s,\infty}(\Omega,\sigma)$ is the weak L^s space.

・ロト・日・・ 山下・ ・ 日・ うくの

Sufficient/necessary conditions for the (1, q)-inequality

Lemma (Quinn-Verbitsky 2018)

Let $\sigma \in \mathcal{M}^+(\Omega)$ and 0 < q < 1. If K satisfies (QS) & (WMP), then the (1, q)-weighted norm inequality (17) holds if $K\sigma \in L^{\frac{q}{1-q}, q}(\Omega, \sigma)$. Conversely, if (1) holds, then $K\sigma \in L^{\frac{q}{1-q}}(\Omega, \sigma)$.

Remarks. 1. The exponents $\frac{q}{1-q}$ and q are sharp: inequality (17) may fail if $K\sigma \in L^{s,r}(\Omega, \sigma)$ with $s = \frac{q}{1-q}$ and r > q, or $0 < s < \frac{q}{1-q}$, r > 0. 2. The condition $K\sigma \in L^{s,r}(\Omega, \sigma)$ with $s = \frac{q}{1-q}$ and r < q is not necessary.

3. Another (independent) *necessary* condition is

$$\sup_{x\in\Omega}\int_{\Omega}K(x,y)^{q}d\sigma(y)<\infty.$$

Necessary condition for the (1, q)-inequality

Remark. The necessity of the condition $\int_{\Omega} (K\sigma)^{\frac{q}{1-q}} d\sigma < \infty$ for the existence of a nontrivial supersolution

$$u(x) \geq K(u^q d\sigma)(x), \quad u \in L^q(\Omega, \sigma),$$

for (WMP)-kernels K, is immediate from Theorem 8 proved above:

Theorem 8 (Grigor'yan-Verbitsky 2020)

Suppose K is a positive kernel on Ω satisfying the (WMP) with constant $\mathfrak{b} > 0$. Let 0 < q < 1. If $u \ge 0$ is a non-trivial supersolution, then

$$u(x) \geq \mathfrak{b}^{-rac{q}{1-q}}(1-q)^{rac{1}{1-q}} \Big[\kappa \sigma(x) \Big]^{rac{1}{1-q}} \quad d\sigma ext{-a.e. in } \Omega.$$

- B