Potential Theory and Nonlinear Elliptic Equations Lecture 5

I. E. Verbitsky

University of Missouri, Columbia, USA

Nankai University, Tianjing, China June 2021

K □ ▶ K ਿ K 시 프 K K 프 X 노 트 및 X 9 Q Q Q

Publications

- ¹ I. Verbitsky, *Bilateral estimates of solutions to quasilinear elliptic equations with sub-natural growth terms*, *Adv. Calc. Var.* (published online, April 2021), DOI: 10.1515/acv-2021-0004
- ² Nguyen Cong Phuc and I. Verbitsky, BMO *solutions to quasilinear equations of p-Laplace type, Ann. Inst. Fourier* (2021, to appear), arXiv:2105.05282
- ³ A. Seesanea and I. Verbitsky, *Finite energy solutions to inhomogeneous nonlinear elliptic equations with sub-natural growth terms, Adv. Calc. Var.*, 13 (2020) 53–74.
- ⁴ S. Quinn and I. Verbitsky, *A sublinear version of Schur's lemma and elliptic PDE*, *Analysis* & *PDE*, 11 (2018) 439–466.
- ⁵ Dat Tien Cao and I. Verbitsky, *Nonlinear elliptic equations and intrinsic potentials of Wolff type*, *J. Funct. Analysis*, 272 (2017) 112–165.
- ⁶ Dat Tien Cao and I. Verbitsky, *Pointwise estimates of Brezis–Kamin type for solutions of sublinear elliptic equations*, *Nonlin. Analysis*, 146 (2016) 1–19. ◀ ㅁ ▶ ◀ 何 ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로 Ω

Additional literature

- ¹ D. R. Adams and L. I. Hedberg, *Function Spaces and Potential Theory*, Grundlehren der math. Wissenschaften, 314, Springer, Berlin, 1996.
- **2** T. Kilpeläinen, T. Kuusi and A. Tuhola-Kujanpää, Superharmonic *functions are locally renormalized solutions*, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 28 (2011), 775–795.
- **3** T. Kilpeläinen and J. Malý, *The Wiener test and potential estimates for quasilinear elliptic equations*, Acta Math., 172 (1994), 137–161. Ann. Inst. H. Poincaré, Anal. Non Linéaire, 28 (2011), 775–795.
- **4** J. Malý and W. Ziemer, *Fine Regularity of Solutions of Elliptic Partial Differential Equations*, Math. Surveys Monogr., 51, Amer. Math. Soc., Providence, RI, 1997.
- ⁵ V. G. Maz'ya, *Sobolev Spaces, with Applications to Elliptic Partial Differential Equations*, 2nd revised augm. ed., Grundlehren der math. Wissenschaften, 342, Springer, Berlin, 2011.
- ⁶ X.-J. Wang, *The k-Hessian Equation*, Lecture Notes Math., 1977, Springer, Berlin, 2009.

 OQ

Finite energy solutions in the Sobolev space $\dot{W}^{1,2}_0(\Omega)$

Let $\Omega \subseteq \mathbb{R}^n$, $n \geq 2$, and let $\mu, \sigma \in \mathcal{M}^+(\Omega)$. Let $0 < q < 1$.

Definition. There exists a positive $W_0^{1,2}$ -solution u (called finite energy solution) to the Dirichlet problem:

$$
\begin{cases}\n-\Delta u = \sigma u^q + \mu & \text{in } \Omega, \\
u = 0 & \text{in } \partial \Omega,\n\end{cases}
$$
\n(1)

if
$$
u \in \dot{W}_0^{1,2}(\Omega) \cap L_{loc}^q(\Omega, d\sigma)
$$
, $u \ge 0$, and
\n
$$
\int_{\Omega} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} \phi \, u^q \, d\sigma + \int_{\Omega} \phi \, d\mu, \quad \forall \phi \in C_0^{\infty}(\Omega). \tag{2}
$$

Here $\dot{W}^{1,2}_0(\Omega)$ is the homogeneous Sobolev (Dirichlet) space, that is, the closure of $\textit{\textsf{C}}_{0}^{\infty}(\Omega)$ in the norm $\|\nabla\textit{\textbf{u}}\|_{\textit{\textbf{L}}^{2}(\Omega)}.$

 Ω

 \leftarrow \leftarrow

Existence and uniqueness of finite energy solutions

Theorem 14 (Seesanea-Verbitsky 2020)

Let $0 < q < 1$, $\Omega \subseteq \mathbb{R}^n$ *Green domain. There exists a solution* $u \in W_0^{1,2}(\Omega)$ to the equation $-\Delta u = \sigma u^q + \mu$ if and only if

$$
\int_{\Omega} (G\sigma)^{\frac{1+q}{1-q}} d\sigma < +\infty, \quad \int_{\Omega} (G\mu) d\mu < +\infty.
$$
 (3)

Moreover, such a solution $u \in L^{1+q}(\Omega, \sigma)$, and is unique.

In the special case $\Omega = \mathbb{R}^n$ ($n \geq 3$), conditions (3) become

$$
\int_{\mathbb{R}^n} (\mathsf{I}_2 \sigma)^{\frac{1+q}{1-q}} \, d\sigma < +\infty, \quad \int_{\mathbb{R}^n} (\mathsf{I}_2 \mu) \, d\mu < +\infty, \tag{4}
$$

where $I_2 \sigma = |\cdot|^{2-n} \star \sigma$ is the Newtonian potential of σ .

 Ω

K □ ▶ K 何 ▶ K ∃ ▶ K ∃ ▶ │ ∃ │

A crucial integral inequality: finite energy solutions

It turns out that this problem is closely related to the trace inequality (in the **non-classical** case $1 + q < 2$):

$$
\left(\int_{\Omega}|\phi|^{1+q}\,d\sigma\right)^{\frac{1}{1+q}}\leq C\,\|\nabla\phi\|_{L^2(\Omega,dx)},\quad \forall \phi\in C_0^\infty(\Omega).
$$

A capacitary characterization [Mazy'a-Netrusov 1995]:

$$
\int_0^{\sigma(\Omega)}\left(\frac{t}{\lambda(\sigma,t)}\right)^{\frac{1+q}{1-q}}dt < +\infty,
$$

 $\lambda(\sigma, t) = \inf \{ cap(E) : \sigma(E) \geq t \}$; equivalent to the Green potential condition [Seesanea-V. 2020] (for $\Omega = \mathbb{R}^n$ [Cascante-Ortega-V. 2000]):

$$
\int_{\Omega} (G\sigma)^{\frac{1+q}{1-q}}\,d\sigma <+\infty.
$$

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations Numelettic Summer 2021 6 / 57

 Ω

◀ ㅁ ▶ ◀ 何 ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로 │

General solutions

We now focus on general (very weak) solutions to homogeneous ($\mu = 0$) equations (1) for $0 < q < 1$. For a bounded $\Omega \subset \mathbb{R}^n$ with C^2 boundary:

$$
\int_{\Omega} -u \,\Delta\phi\,dx = \int_{\Omega} u^q \,\phi\,d\sigma, \quad \forall \phi \in C_0^2(\overline{\Omega}), \tag{5}
$$

where $u \in L^1(\Omega, dx) \cap L^q(\Omega, \delta_{\Omega} d\sigma)$, is a non-trivial positive solution $(0 < u < +\infty \, d\sigma$ -a.e.) Similar definitions are known for Lipschitz Ω . For bounded C^2 domains, Definition (5) is equivalent to:

$$
u(x) = \int_{\Omega} G^{\Omega}(x, y) u^{q}(y) d\sigma(y), \quad x \in \Omega.
$$
 (6)

For arbitrary Green domains $\Omega \subset \mathbb{R}^n$: we use Definition (6).

Remark. We can treat non-homogeneous equations (1) with $\mu \neq 0$ in *uniform* domains Ω in a similar way: $u = G(u^q d\sigma) + G\mu$.

 Ω

- 토 - K 토 > K 토 > K 토 → K 토 →

Bounded solutions on R*ⁿ*

In the case
$$
\Omega = \mathbb{R}^n
$$
, $n \geq 3$: $G^{\mathbb{R}^n}(x, y) = c_n |x - y|^{2-n}$, and

$$
u = I_2(u^q d\sigma) \quad \text{in } \mathbb{R}^n. \tag{7}
$$

Let $U(x) := I_2\sigma(x)$ denote the Newtonian potential of $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$.

Theorem (Brezis-Kamin 1992)

Let $0 < q < 1$, $\sigma \in L^{\infty}_{loc}(\mathbb{R}^{n})$ $(\sigma \neq 0)$. There exists a nontrivial *bounded solution to equation* (7) *in* \mathbb{R}^n *such that* $\liminf_{|x| \to +\infty} u(x) = 0$ *if and only if* $U \in L^{\infty}(\mathbb{R}^n)$ *. Moreover, such a solution is unique, and satisfies the global estimates:*

$$
U(x)^{\frac{1}{1-q}}\leq u(x)\leq C\ U(x),\quad x\in\mathbb{R}^n.\tag{8}
$$

Both the lower and the upper estimates in (8) are sharp in a sense.

Remark. More precise bilateral estimates use new *nonlinear potentials*.

 OQ

◀ ㅁ ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로

Extension of the Brezis-Kamin theorem Homogeneous equations on $\Omega = \mathbb{R}^n$

Theorem 15 (Cao-Verbitsky 2016)

Let $0 < q < 1$ and $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$ ($\sigma \neq 0$). Suppose for a constant C ,

 $\sigma(F) \leq C \operatorname{cap}(F)$, \forall compact sets $F \subset \mathbb{R}^n$. (9)

Then there exists a nontrivial solution u > 0 *to* (7) *such that* $\liminf_{|x| \to +\infty} u(x) = 0$, and for any solution *u*,

$$
U(x)^{\frac{1}{1-q}}\leq u(x)\leq C\left(U(x)+U(x)^{\frac{1}{1-q}}\right),\quad x\in\mathbb{R}^n,\qquad(10)
$$

provided $U \not\equiv +\infty$ (otherwise there is no solution).

Remarks. 1. Both estimates are sharp as in the Brezis-Kamin theorem. 2. The lower estimate holds for any $\sigma \geq 0$, without (9). 3. Condition (9) is weaker than $U \in L^{\infty}(\mathbb{R}^n)$, and allows unbounded solutions u .

 OQ

Weak solutions on \mathbb{R}^n : the radial case

In the radial case σ depends only on $r = |x|$ in \mathbb{R}^n , $n \geq 3$, and

$$
U(r)=c_n\left(\frac{1}{r^{n-2}}\int_0^r t^{n-1} d\sigma(t)+\int_r^{\infty} t d\sigma(t)\right).
$$

Theorem 16 (Cao-Verbitsky 2016)

Let $0 < q < 1$ *. Suppose* σ *is radial* ($\sigma \neq 0$)*. Then* (7) *has a nontrivial (radial)* solution iff

$$
\int_0^1 \frac{t^{n-1}d\sigma(t)}{t^{(n-2)q}} < +\infty, \text{ and } \int_1^{+\infty} t\,d\sigma(t) < +\infty.
$$

Moreover, any solution u satisfies:

$$
u(x) \approx U(r)^{\frac{1}{1-q}} + \frac{1}{r^{n-2}} \left(\int_0^r \frac{t^{n-1} d\sigma(t)}{t^{(n-2)q}} \right)^{\frac{1}{1-q}}
$$

.

Weak solutions on \mathbb{R}^n : a crucial weighted norm inequality The problem of the existence of weak solutions to (7) is closely related to the following integral $(1, q)$ -inequality in the case $0 < q < 1$: for all $\phi \in \textit{\textsf{C}}_{0}^{\textit{2}}(\mathbb{R}^{n})$ such that $\phi \geq 0,\, \Delta \phi \leq 0,$

$$
\left(\int_{\mathbb{R}^n}\phi^q\,d\sigma\right)^{\frac{1}{q}}\leq\varkappa\,\int_{\mathbb{R}^n}|\Delta\phi|\,dx.
$$

Equivalently, a weighted norm inequality for Newtonian potentials holds:

$$
\left(\int_{\mathbb{R}^n} (\mathsf{I}_2 \nu)^q \, d\sigma\right)^{\frac{1}{q}} \leq \varkappa \, \|\nu\|, \quad \forall \nu \in \mathcal{M}^+(\mathbb{R}^n). \tag{11}
$$

More generally, for the equation $(-\Delta)^{\frac{\alpha}{2}}u = \sigma u^q$, $0 < \alpha < n$,

$$
\left(\int_{\mathbb{R}^n} (\mathsf{I}_{\alpha}\nu)^q \,d\sigma\right)^{\frac{1}{q}} \leq \varkappa \, \|\nu\|, \quad \forall \nu \in \mathcal{M}^+(\mathbb{R}^n).
$$

By \times we will denote the least constant in these inequalities. DQ

Localized integral inequality

We will need a local version of the preceding inequality, where the measure $\sigma = \sigma_B$ is restricted to a ball *B* in \mathbb{R}^n :

$$
\left(\int_B (\mathsf{I}_{\alpha}\nu)^q\,d\sigma\right)^{\frac{1}{q}}\leq \varkappa_B\,\nu(\mathbb{R}^n),\quad \forall \nu\in\mathcal{M}^+(\mathbb{R}^n).
$$

The least constants \mathcal{H}_B , where $B = B(x, r)$, are used to define a new **intrinsic** potential $K = K_\alpha$ of Wolff type,

$$
\mathsf{K}\sigma(x)=\int_0^{+\infty}\frac{\left(\varkappa_{B(x,r)}\right)^{\frac{q}{1-q}}}{r^{n-\alpha}}\frac{dr}{r},\quad x\in\mathbb{R}^n.\tag{12}
$$

 Ω

Main Theorem

Theorem 17 (Cao-Verbitsky 2017)

Suppose $\Omega = \mathbb{R}^n$, and $0 < q < 1$. Then (7) has a nontrivial (super) *solution u such that* **lim inf**_{$|x| \to +\infty$ *u***(***x***) = 0** *if and only if the following*} *condition holds:*

$$
\int_{1}^{+\infty} \frac{\sigma(B(0,r))}{r^{n-2}} \frac{dr}{r} + \int_{1}^{+\infty} \frac{(\varkappa_{B(0,r)})^{\frac{q}{1-q}}}{r^{n-2}} \frac{dr}{r} < +\infty.
$$
 (13)

Moreover, any solution u to (7) *satisfies*

$$
u(x) \approx \left(I_2 \sigma(x) \right)^{\frac{1}{1-q}} + \int_0^{+\infty} \frac{\left(\varkappa_{B(x,r)} \right)^{\frac{q}{1-q}} dr}{r^{n-2}}.
$$
 (14)

Remarks. 1. The second term is the intrinsic nonlinear potential $K\sigma(x)$ defined by (12) with $\alpha = 2$. 2. The upper estimate in (14) is proved only for the *minimal* solution in [Cao-V. 2017]; for all solutions in [V. 2021]. Ω Existence of $W^{1,2}_{loc}$ solutions (Sobolev regularity)

For the existence of a solution $\textbf{\textit{u}} \in \textit{W}_\text{loc}^{1,2}(\mathbb{R}^n)$, an additional <mark>local</mark> version of the condition for finite energy solutions (Theorem 14) is needed:

$$
\int_{B(0,R)} \left(\mathbf{I}_2 \sigma_{B(0,R)} \right)^{\frac{1+q}{1-q}} d\sigma < \infty, \quad \forall R > 0. \tag{15}
$$

Theorem 18 (Cao-Verbitsky 2017)

Under the assumptions of the previous theorem, there exists a nontrivial weak (super) solution $u \in W^{1,2}_{\text{loc}}(\mathbb{R}^n)$ *such that* $\liminf_{|x| \to +\infty} u(x) = 0$ *if and only if* (15) *holds together with*

$$
\int_1^{+\infty} \frac{\sigma(B(0,r))}{r^{n-2}}\,\frac{dr}{r}+\int_1^{+\infty}\frac{(\varkappa_{B(0,r)})^{\frac{q}{1-q}}}{r^{n-2}}\,\frac{dr}{r}<+\infty.
$$

Moreover, global pointwise estimates (14) *hold.*

つへへ

 \Rightarrow

→ 重き

Wolff potentials

Let $\mu \in \mathcal{M}^+(\mathbb{R}^n)$. Let $0 < \alpha < n$ and $1 < p < \infty$. The Wolff potential $W_{\alpha,p}\mu$ (more accurately, the Havin-Maz'ya-Wolff potential) is defined by

$$
\mathsf{W}_{\alpha,p}\mu(x):=\int_0^\infty\left(\frac{\mu(B(x,\rho))}{\rho^{n-\alpha p}}\right)^{\frac{1}{p-1}}\frac{d\rho}{\rho},\quad x\in\mathbb{R}^n.\qquad(16)
$$

Recall that in the linear case $p = 2$ we have $W_{\alpha,2}\mu = I_{2\alpha}\mu$.

As we will prove below, $\mathsf{W}_{\alpha,\bm{\mathcal{p}}} \mu \not\equiv +\infty$ if and only if for $0 < \alpha < \frac{n}{\bm{\mathcal{p}}}$

$$
\int_1^\infty \left(\frac{\mu(B(0,\rho))}{\rho^{n-\alpha p}}\right)^{\frac{1}{p-1}}\frac{d\rho}{\rho} < +\infty.
$$
 (17)

Remarks. 1. In the special case $\alpha = 1$, Wolff potentials $W_{1,p}$ play an important role in the theory of quasilinear equations of *p*-Laplace type. 2. For $1 < p < 2 - \frac{\alpha}{n}$, we may have $\mathsf{W}_{\alpha,p} \mu \not\in \mathsf{L}^1_{\mathrm{loc}}(\mathbb{R}^n, d\mathsf{x})$.

K □ ▶ K 部 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (Ŷ

We start with some useful estimates for Wolff potentials.

Lemma (Wolff potential estimates)

 $Suppose \ 1 < p < \infty$, $0 < \alpha < \frac{n}{p}$, and $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$. Let $s = min(1, p - 1)$. Then there exists a positive constant $c = c(n, p, \alpha)$ *such that, for all* $x \in \mathbb{R}^n$ *and* $R > 0$ *,*

$$
c^{-1} \int_{R}^{\infty} \left(\frac{\sigma(B(x,r))}{r^{n-\alpha p}} \right)^{\frac{1}{p-1}} \frac{dr}{r} \leq \inf_{B(x,R)} W_{\alpha,p}\sigma
$$

\$\leq \left(\frac{1}{|B(x,R)|} \int_{B(x,R)} [W_{\alpha,p}\sigma(y)]^{s} dy \right)^{\frac{1}{s}} \qquad (18)\$
\$\leq c \int_{R}^{\infty} \left(\frac{\sigma(B(x,r))}{r^{n-\alpha p}} \right)^{\frac{1}{p-1}} \frac{dr}{r} .

 \blacktriangleleft \oplus \blacktriangleright \dashv \exists \blacktriangleright \dashv \exists \blacktriangleright G. Ω \leftarrow \Box

(continuation)

Proof: WLOG assume $x = 0$. We first prove the last estimate in (18). Clearly,

$$
\frac{1}{|B(0,R)|}\int_{B(0,R)}\left[W_{\alpha,p}\sigma(y)\right]^s\,dy\leq I_1+I_2,
$$

where

$$
I_1=\frac{1}{|B(0,R)|}\int_{B(0,R)}\left(\int_0^R\left(\frac{\sigma(B(y,r))}{r^{n-\alpha p}}\right)^{\frac{1}{p-1}}\frac{dr}{r}\right)^s dy,
$$

$$
I_2=\frac{1}{|B(0,R)|}\int_{B(0,R)}\left(\int_R^\infty\left(\frac{\sigma(B(y,r))}{r^{n-\alpha p}}\right)^{\frac{1}{p-1}}\frac{dr}{r}\right)^s dy.
$$

To estimate I_2 , notice that since $B(y, r) \subset B(0, 2r)$ for $y \in B(0, R)$ and $r > R$, it follows

$$
I_2\leq \left(\int_R^\infty\left(\frac{\sigma(B(0,2r))}{r^{n-\alpha p}}\right)^{\frac{1}{p-1}}\frac{dr}{r}\right)^s.
$$

 \curvearrowright

(continuation)

To estimate I_1 , suppose first that $p \geq 2$ so that $s = 1$. Then using Fubini's theorem and Jensen's inequality we deduce

$$
I_1 \leq \int_0^R \left(\frac{1}{|B(0,R)|} \int_{B(0,R)} \sigma(B(y,r)) \, dy \right)^{\frac{1}{p-1}} \frac{dr}{r^{\frac{n-\alpha p}{p-1}+1}}.
$$

Using Fubini's theorem again, we obtain

$$
\int_{B(0,R)} \sigma(B(y,r)) dy \leq \int_{B(0,2R)} |B(y,r)| d\sigma = c_n r^n \sigma(B(0,2R)).
$$

Hence, there is a constant $\mathbf{c} = \mathbf{c}(\mathbf{n}, \mathbf{p}, \alpha)$ such that

$$
I_1 \leq c R^{-\frac{n}{p-1}} \sigma(B(0,2R))^{\frac{1}{p-1}} \int_0^R r^{\frac{\alpha p}{p-1}-1} dr
$$

= $c R^{\frac{\alpha p-n}{p-1}} \sigma(B(0,2R))^{\frac{1}{p-1}} \leq c \int_R^{\infty} \left(\frac{\sigma(B(0,2r))}{r^{n-\alpha p}} \right)^{\frac{1}{p-1}} \frac{dr}{r}.$

(continuation)

Notice that this is the same estimate we deduced for *with* $*s* = 1$ *.* Next, we estimate I_1 for $p < 2$ and $s = p - 1$. In this case, we will use the following elementary inequality: for every $R > 0$,

$$
\left(\int_0^R\left(\frac{\phi(r)}{r^{\gamma}}\right)^{\frac{1}{p-1}}\frac{dr}{r}\right)^{p-1}\leq c(p,\gamma)\int_0^{2R}\frac{\phi(r)}{r^{\gamma}}\frac{dr}{r},
$$

where $\gamma > 0$, $1 < p < 2$, and ϕ is a non-decreasing function on $(0, \infty)$. By this inequality with $\phi(r) = \sigma(B(0, 2r))$ and $\gamma = n - \alpha p$, we obtain:

$$
I_1 \leq \frac{c}{|B(0,R)|} \int_{B(0,R)} \int_0^{2R} \frac{\sigma(B(y,r))}{r^{n-\alpha p}} \frac{dr}{r} dy
$$

$$
\leq c R^{-n} \sigma(B(0,2R)) \int_0^{2R} r^{\alpha p-1} dr = c R^{-n+\alpha p} \sigma(B(0,2R))
$$

$$
\leq c \left(\int_R^{\infty} \left(\frac{\sigma(B(0,2r))}{r^{n-\alpha p}} \right)^{\frac{1}{p-1}} \frac{dr}{r} \right)^{p-1}.
$$

(continuation)

Combining the estimates for *I*¹ and *I*2, we arrive at

$$
\frac{1}{|B(0,R)|}\int_{B(0,R)} \!\!\left({\mathsf W}_{\alpha,p}\sigma\right)^s dy \le c \left(\int_R^\infty \left(\frac{\sigma(B(0,2r))}{r^{n-\alpha p}}\right)^{\frac{1}{p-1}}\frac{dr}{r}\right)^s.
$$

Making the substitution $\rho = 2r$ proves the upper estimate in (18). To prove the lower estimate of $W_{\alpha,p}\sigma$, letting $r=2\rho$ we deduce

$$
{\mathsf W}_{\alpha,p}\sigma({\mathsf y})\geq 2^{-\frac{n-\alpha p}{p-1}}\int_R^\infty\left(\frac{\sigma(B({\mathsf y},2\rho))}{\rho^{n-\alpha p}}\right)^{\frac{1}{p-1}}\frac{d\rho}{\rho}.
$$

For all $y \in B(0, R)$ and $\rho > R$, we have $B(y, 2\rho) \supset B(0, \rho)$. Hence,

$$
\inf_{B(0,R)}\mathsf{W}_{\alpha,p}\sigma\geq 2^{-\frac{n-\alpha p}{p-1}}\int_{R}^{\infty}\left(\frac{\sigma(B(0,\rho))}{\rho^{n-\alpha p}}\right)^{\frac{1}{p-1}}\frac{d\rho}{\rho}.\quad \Box
$$

◀ ㅁ ▶ ◀ ત] ➡ N ◀ 로 ▶ - 그 → 이 ٩ (^

(continuation)

Corollary

 $Suppose 1 < p < \infty$, $0 < \alpha < \frac{n}{p}$, and $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$. (i) $W_{\alpha,\rho}\sigma \not\equiv +\infty$ *if and only if*

$$
\int_1^\infty \left(\frac{\sigma(B(0,r))}{r^{n-\alpha p}}\right)^{\frac{1}{p-1}}\frac{dr}{r}<\infty.
$$
 (19)

(ii) *Condition* (19) *yields*

$$
\int_{R}^{\infty} \left(\frac{\sigma(B(x,r))}{r^{n-\alpha p}} \right)^{\frac{1}{p-1}} \frac{dr}{r} < \infty, \quad \forall x \in \mathbb{R}^{n}, R > 0.
$$
 (20)

(iii) If (19) holds, then $W_{\alpha,p}\sigma \in L^s_{loc}(dx)$, where $s = \min(1, p-1)$, *and*

$$
\liminf_{|x| \to \infty} W_{\alpha, p} \sigma(x) = 0. \tag{21}
$$

Wolff's inequality

Wolff's inequality was proved by Th. Wolff using a dyadic model of Wolff's potential. It appeared in [Hedberg-Wolff 1983] in relation to the spectral synthesis problem for Sobolev spaces studied by L. I. Hedberg. Let $\dot{W}^{-\alpha,p'}(\mathbb{R}^n) = \left[\dot{W}^{\alpha,p}_0(\mathbb{R}^n)\right]$ \rceil denote the dual Sobolev space, where $\frac{1}{p}+\frac{1}{p'}=1$, $0<\alpha<\frac{n}{p}$. Define the (α,p) -energy of $\mu\in\mathcal{M}^+(\mathbb{R}^n)$ by $\mathcal{E}_{\alpha,p}(\mu): = \frac{1}{\alpha}$ R*ⁿ* $(\mathbf{I}_{\alpha}\mu)^{p'} dx = ||\mu||_{\dot{W}^{-\alpha,p'}(\mathbb{R}^n)}^{p'}$ *.*

Wolff's inequality gives bilateral estimates of $\mathcal{E}_{\alpha,p}(\mu)$ in terms of $\mathsf{W}_{\alpha,p}\mu$.

Theorem (Hedberg-Wolff 1983)

 $Suppose \ 1 < p < \infty$, $0 < \alpha < \frac{n}{p}$, and $\mu \in \mathcal{M}^+(\mathbb{R}^n)$. Then there *exists a constant* $C = C(\alpha, p, n)$ *such that*

$$
\mathcal{C}^{-1}\,\mathcal{E}_{\alpha,p}(\mu)\leq \int_{\mathbb{R}^n} W_{\alpha,p}\mu\,d\mu\leq \mathcal{C}\,\mathcal{E}_{\alpha,p}(\mu). \qquad (22)
$$

More general *A*-Laplace operators

Let $\Omega \subseteq \mathbb{R}^n$ be an open set. Let us assume that $\mathcal{A} \colon \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ satisfies the following structural assumptions:

 $x \to \mathcal{A}(x,\xi)$ is measurable for all $\xi \in \mathbb{R}^n$,

 $\xi \to \mathcal{A}(x,\xi)$ is continuous for a.e. $x \in \Omega$,

and there are constants $0 < \alpha \leq \beta < \infty$, such that for a.e. $x \in \Omega$, and for all ξ in \mathbb{R}^n ,

$$
\mathcal{A}(x,\xi)\cdot\xi\geq\alpha|\xi|^p,\quad |\mathcal{A}(x,\xi)|\leq\beta|\xi|^{p-1},
$$

$$
(\mathcal{A}(x,\xi_1)-\mathcal{A}(x,\xi_2))\cdot(\xi_1-\xi_2)>0\quad\text{if}\ \xi_1\neq\xi_2.
$$

 \overline{AB} \rightarrow \overline{B} \rightarrow \overline{B} \rightarrow \overline{B} \rightarrow \overline{DA} \curvearrowright

A-superharmonic solutions

Let $\mu \in \mathcal{M}^+(\Omega)$. We consider the equation

$$
-\operatorname{div} \mathcal{A}(x, \nabla u) = \mu \quad \text{in } \Omega. \tag{23}
$$

A nonlinear potential theory for the equation with measure right-hand side $\mu \in \mathcal{M}^+(\Omega)$,

$$
-\operatorname{div} \mathcal{A}(x, \nabla u) = \mu, \qquad (24)
$$

where $\boldsymbol{\mu}$ is $\boldsymbol{\mathcal{A}}$ -superharmonic, was developed by [Kilpeläinen-Malý '93/94]. They obtained bilateral pointwise estimates of solutions $u > 0$ to (24) in terms of Wolff potentials.

Definition. A function $u \in W^{1,p}_{\text{loc}}(\Omega)$ is called \mathcal{A} -harmonic if it satisfies the homogeneous equation $div A(x, \nabla u) = 0$ in the weak sense. Every *A*-harmonic function has a continuous representative $\tilde{u} = u$ a.e.

K □ ▶ K fी ▶ K 로 ▶ K 로 ▶ _ 도 _ K 이 Q (Q

A-superharmonic functions

Next, define *A*-superharmonic functions via a *comparison principle*: **Definition.** A function $u: \Omega \to (-\infty, \infty]$ is *A*-superharmonic if *u* is *lower semicontinuous*, not identically $+\infty$ in any component of Ω , and, for every open $D \Subset \Omega$ and $h \in C(D)$, where *h* is *A*-harmonic in *D*, $h \le u$ on $\partial D \Longrightarrow h \le u$ in D. Some ${\mathcal A}$ -superharmonic functions ${\pmb u}\not\in\operatorname{W}^{1,p}_{\rm loc}(\Omega)$. However, for ${\pmb u}\geq {\pmb 0}$, $\mathsf{truncates}\;\; \mathcal{T}_{\bm k}(\bm u)=\min(\bm u,\bm k)\in\mathrm{W}_{\mathrm{loc}}^{1,\bm\rho}(\Omega)$, $\forall \bm k>\bm 0.$ Note that

$$
-\mathrm{div}\mathcal{A}(x,\nabla T_k(u))=\mu_k\geq 0,\quad \mu_k\in\mathcal{M}^+(\Omega),
$$

in the weak sense. The generalized gradient D*u* of an *A*-superharmonic function $u \geq 0$ is defined by

$$
Du=\lim_{k\to+\infty}\nabla(\mathcal{T}_k(u)).
$$

K □ ▶ K f R K H Y Y A H Y Y Y A Q (Y Q Q Q

A-superharmonic solutions

Remark. Every *A*-superharmonic function *u* has a *quasi-continuous* representative $\tilde{u} = u$ quasi-everywhere $(q.e.)$, that is, everywhere except for a set of *p*-capacity zero. We assume that *u* is always chosen this way. Moreover, $u(x) = \liminf_{y \to x} u(y)$ for all $x \in \Omega$.

Let *u* be *A*-superharmonic, and let $1 \leq r < \frac{n}{n-1}$. Then $|Du|^{p-1}$, and consequently $\mathcal{A}(x,\mathrm{D} u)$, belongs to $L^r_{\mathrm{loc}}(\Omega)$. This allows us to define a nonnegative distribution $-\text{div}\mathcal{A}(x, Du)$ by

$$
-\langle \operatorname{div} \mathcal{A}(x, Du), \varphi \rangle = \int_{\Omega} \mathcal{A}(x, Du) \cdot \nabla \varphi \, dx, \qquad (25)
$$

for all $\varphi \in \textsf{C}_0^\infty(\Omega).$ Then by the Riesz representation theorem there exists a unique Radon measure $\mu = \mu(u) \in \mathcal{M}^+(\Omega)$ so that

$$
-\text{div}\mathcal{A}(x,\text{D}u)=\mu\quad\text{in }\Omega.
$$
 (26)

KID KAP KID KID KID A GAQO

Renormalized solutions

Consider the equation $-\text{div}\mathcal{A}(x,\nabla u) = \mu$ in Ω , where $\mu \in \mathcal{M}^+(\Omega)$, and $\Omega \subseteq \mathbb{R}^n$ is an open set. Let us use the decomposition $\mu = \mu_0 + \mu_s$: μ_0 is absolutely continuous, and μ_s is singular with respect to **p**-capacity. Let $T_k(s) = \max\{-k, \min\{k, s\}\}.$ **Definition.** A function $u \in L^{(p-1)s}_{\text{loc}}(\Omega, dx)$ for all $1 \leq s < \frac{n}{n-p}$ is called a *local renormalized solution* if, for all $k>0$, $\mathcal{T}_k(u) \in W^{1,p}_{\mathrm{loc}}(\Omega)$, $\mathbf{D} \boldsymbol{u} \in \boldsymbol{L}_{\mathrm{loc}}^{(p-1)r}(\Omega)$ for all $1 \leq r < \frac{n}{n-1}$, and z Ω $\langle A(x, Du), Du \rangle h'(u) \phi dx +$ Z Ω $\langle A(x, Du), \nabla \phi \rangle h(u) \phi dx$ = Z Ω $h(u) \phi d\mu_0 + h(+\infty)$ Z Ω ϕ *d* μ_s ,

for all $\phi \in \textsf{C}_0^\infty(\Omega)$, and all $h \in W^{1,\infty}(\mathbb{R})$, h' is compactly supported.

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ Y) Q (Ŷ

A-Laplace operators

Remarks. It is known [Kilpeläinen et al. 2011] that every *A*-superhamonic solution is a local renormalized solution, and conversely, every local renormalized solution has an *A*-superharmonic representative.

One can work either with local renormalized solutions, or equivalently with *A*-superharmonic solutions, or finite energy solutions in the case $u \in W_0^{1,p}(\Omega)$. For finite energy solutions, Du coincides with the distributional gradient ∇u , and $\mu(u)$ is absolutely continuous with respect to the *p*-capacity.

Basic facts of potential theory, including nonlinear potential estimates, and the weak continuity principle, hold for the general *A*-Laplace operator $\text{div } \mathcal{A}(x, \nabla u)$ under the standard structural assumptions imposed above. Pointwise gradient estimates for D*u* and BMO estimates discussed below require some extra assumptions on *A*.

K □ ▶ K f P ★ ミ ▶ K ミ ▶ │ ミ │ め Q (Ŷ

The Kilpeläinen-Malý theorem (local version)

Theorem (Kilpeläinen-Malý 1994)

Let $\Omega \subset \mathbb{R}^n$ and $B(x, 2R) \subset \Omega$. Let $\mu \in \mathcal{M}^+(\Omega)$ and $1 < p \leq n$. *Under the above structural assumptions on A, there exists a constant* $C = C(\alpha, \beta, p, n)$ *such that*

$$
C^{-1}W_{1,p}^{R}\mu(x) \le u(x)
$$

\n
$$
\le C \left[\inf_{B(x,R)} u + W_{1,p}^{2R}\mu(x)\right],
$$
\n(27)

for any A -superharmonic solution $u \geq 0$ of the equation

$$
-\operatorname{div} \mathcal{A}(x, \nabla u) = \mu \quad \text{in } \Omega. \tag{28}
$$

Here the truncated Wolff potential of $\mu \in \mathcal{M}^+(\Omega)$ is defined by

$$
\mathsf{W}^R_{\alpha,p}\mu(x) := \int_0^R \left(\frac{\mu(B(x,\rho) \cap \Omega)}{\rho^{n-\alpha p}} \right)^{\frac{1}{p-1}} \frac{d\rho}{\rho}, \quad x \in \Omega. \tag{29}
$$

The Kilpeläinen-Malý theorem (global version)

Corollary (Kilpeläinen-Malý 1994)

Let $\mu \in \mathcal{M}^+(\mathbb{R}^n)$ and $1 < p < n$. Under the above structural *assumptions on* $\mathcal{A}(x, \xi)$, there exists a constant $C = C(\alpha, \beta, p, n)$ such *that*

$$
C^{-1}W_{1,p}\mu(x)\leq u(x)\leq C\,W_{1,p}\mu(x),\qquad x\in\mathbb{R}^n,\qquad(30)
$$

for any p-superharmonic solution u of the equation

$$
-\operatorname{div} \mathcal{A}(x,\nabla u)=\mu \quad \text{in } \mathbb{R}^n, \qquad \liminf_{x\to\infty} u(x)=0. \qquad (31)
$$

In the case $p > n$ *there are no nontrivial solutions to* (28) *on* \mathbb{R}^n *.*

Moreover, an \mathcal{A} -superharmonic solution $u \geq 0$ exists on \mathbb{R}^n if and only if $W_{1,p}\mu \not\equiv \infty$, that is, condition (17) holds [Phuc-Verbitsky 2008].

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (Ŷ

Wolff potential estimates (continuation)

It is easy to see that if $\mu \in \mathcal{M}^+(\mathbb{R}^n)$, and $u \in W^{1,p}_{\mathrm{loc}}(\mathbb{R}^n)$ is a weak solution to the equation $-\text{div}\mathcal{A}(x,\nabla u) = \mu$, then $\mu \in W^{-1,p'}_{\text{loc}}(\mathbb{R}^n)$.

The converse statement is contained in the next lemma.

Lemma

 $Suppose~1 < p < n$, and $\mu \in \mathcal{M}^{+}(\mathbb{R}^{n}) \cap W^{-1,p'}_{\text{loc}}(\mathbb{R}^{n})$. If $u \geq 0$ is an *A*-superharmonic solution to the equation $-\text{div}\mathcal{A}(x,\nabla u) = \mu$ in \mathbb{R}^n , then $u \in W^{1,p}_{\mathrm{loc}}(\mathbb{R}^n) \cap L^1_{\mathrm{loc}}(\mathbb{R}^n, d\mu)$.

Remark. The proof of the lemma uses Caccioppoli type inequalities and the notion of local renormalized solutions discussed above (see details in [Cao-Verbitsky 2017]).

K □ ▶ K fी ▶ K 로 ▶ K 로 ▶ _ 도 _ K 이 Q (Q

BMO solutions

It is immediate from pointwise estimates (30) of solutions *u* to (31) that *u* is uniformly bounded on \mathbb{R}^n if and only if $W_{1,p}\mu$ is uniformly bounded.

We next state recent results (joint with Nguyen Cong Phuc) on BMO solutions *u* to equation (31).

Recall that BMO(R*n*) is the space of functions *u* of bounded mean ${\sf oscillation}$ in $\mathbb{R}^n\colon\thinspace\boldsymbol{u}\in L^1_{\rm loc}(\mathbb{R}^n)$, and there exists a constant \boldsymbol{C} so that

$$
\frac{1}{|B|}\int_B|u-\bar{u}_B|dx\leq C,
$$

for all balls \boldsymbol{B} in $\mathbb{R}^{\boldsymbol{n}}$, where $\bar{\boldsymbol{u}}_{\boldsymbol{B}} = \frac{1}{|B|}$ *|B|* $\int_B u dx$. We will need a class of measures $\mu \in \mathcal{M}^+(\mathbb{R}^n)$ satisfying the Frostman type condition

$$
\mu(B(x,R)) \leq CR^{n-p}, \quad \forall x \in \mathbb{R}^n, R > 0. \tag{32}
$$

Notice that $\text{cap}_p(B(x,R)) = c R^{n-p}$ where $c = c(p,n)$.

 DQQ

BMO solutions

(continuation)

Theorem 19 (Phuc-Verbitsky 2021)

Let $\mu \in \mathcal{M}^+(\mathbb{R}^n)$ and $1 < p < n$. Then equation (31) has a solution $u \in \text{BMO}(\mathbb{R}^n)$ *if and only* $W_{1,p}\sigma \not\equiv \infty$ *and condition* (32) *holds, under certain restrictions on A. Moreover, any solution u to* (31) *lies in* $\text{BMO}(\mathbb{R}^n)$ *if and only if* μ *satisfies* (32).

Remarks. 1. If μ satisfies (32), then actually any solution μ to (31) satisfies the Morrey condition

$$
\int_{B(x,R)}|\nabla u|^s dy\leq C R^{n-s},\quad \forall x\in\mathbb{R}^n,\ R>0,
$$

provided $1 \leq s < p$. This yields $u \in \text{BMO}(\mathbb{R}^n)$ by Poincaré's inequality. 2. The case $p = 2$ of Theorem 13 is due to [D. Adams 1975], and $p \ge 2$ to [G. Mingione 2007] (a local version).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → ⊙ Q ⊙

Quasilinear equations with lower order terms

We next consider nontrivial solutions to quasilinear equations of the type

$$
-\operatorname{div} \mathcal{A}(x,\nabla u)=\sigma u^{q} \quad \text{in } \mathbb{R}^{n}, \qquad (33)
$$

for $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$, under the assumption that the \mathcal{A} -Laplace operator of Δ_p type $(1 < p < +\infty)$ obeys the conditions on *A* imposed above. We focus on the sub-natural growth case $0 < q < p-1$. This is an analogue of the sublinear case $0 < q < 1$ for $p = 2$.

We denote by *U* a positive solution to the equation

$$
-\mathrm{div}\mathcal{A}(x,\nabla U)=\sigma, \qquad \liminf_{x\to+\infty}U(x)=0.
$$

Recall that by [Kilpeläinen-Malý 1994],

$$
U(x) \approx W_{1,p}\sigma(x) = \int_0^\infty \left(\frac{\sigma(B(x,\rho))}{\rho^{n-p}}\right)^{\frac{1}{p-1}}\frac{d\rho}{\rho}, \quad x \in \mathbb{R}^n.
$$

K □ ▶ K 何 ▶ K 草 ▶ K 草 ▶ │ 草 │ │ Ω

Finite energy solutions

Theorem 20 (Cao-Verbitsky 2016)

Let $1 < p < n$ and $0 < q < p-1$. There exists a solution $u \in \dot{W}^{1,p}_0(\mathbb{R}^n)$ to equation (33) if and only if

$$
\int_{\mathbb{R}^n} U^{\frac{(1+q)(p-1)}{p-1-q}} d\sigma < +\infty.
$$
 (34)

Moreover, such a solution $u \in L^{1+q}(\mathbb{R}^n, \sigma)$ and is unique. There are no *nontrivial solutions on* \mathbb{R}^n *if* $p \geq n$ *.*

Remark. Similar results for inhomogeneous equations $-\text{div}\mathcal{A}(x,\nabla u) = \sigma u^q + \mu$ hold. A necessary and sufficient condition for $\textbf{\textit{u}} \in \dot{W}^{1,p}_0(\mathbb{R}^n)$ is given in [Seesanea-V. 2017]:

$$
\int_{\mathbb{R}^n} (W_{1,p}\sigma)^{\frac{(1+q)(p-1)}{p-1-q}}\,d\sigma<+\infty,\quad \int_{\mathbb{R}^n} (W_{1,p}\mu)\,d\mu<+\infty.
$$

K ㅁ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 9 Q @

Pointwise estimates of Brezis–Kamin type

Theorem 21 (Cao-Verbitsky 2016)

Let $1 < p < n$ and $0 < q < p-1$. Let σ be a positive measure on \mathbb{R}^n such that, for every compact set $F \subset \mathbb{R}^n$,

 $\sigma(F) \leq C \operatorname{cap}_p(F)$.

Then there exists a positive solution u to (33) *such that* $\liminf_{x\to+\infty} u(x)=0$, and

$$
C_1 U^{\frac{p-1}{p-1-q}} \leq u \leq C_2 \left(U + U^{\frac{p-1}{p-1-q}}\right),
$$

provided $U \not\equiv +\infty$. Otherwise there are no nontrivial solutions.

Remark. For inhomogeneous equations $-\text{div}\mathcal{A}(x,\nabla u) = \sigma u^q + \mu$, similar estimates hold if we add $W_{1,p}\mu$ to both sides [Verbitsky 2021].

 OQ

(□) (何) (□) (□) (□)

Pointwise estimates in the general case

We consider the weighted norm inequality

$$
\|\mathsf{W}_{1,p}\nu\|_{\mathsf{L}^q(\Omega,\sigma)}\leq\varkappa\,\|\nu\|^{\frac{1}{p-1}},\quad\forall\nu\in\mathcal{M}^+(\mathbb{R}^n).
$$
 (35)

For $B = B(x, r)$, let \varkappa_B be the least constant in the localized inequality

$$
\|\mathsf{W}_{1,p}\nu\|_{\mathsf{L}^q(\Omega,\sigma_B)}\leq \varkappa_B \|\nu\|^{\frac{1}{p-1}},\quad \forall \nu\in\mathcal{M}^+(\mathbb{R}^n),\qquad(36)
$$

Then for any nontrivial solution *u* to (33) we have:

$$
u(x) \approx (W_{1,p}\sigma(x))^{\frac{p-1}{p-1-q}} + \int_0^\infty \frac{\left(\varkappa_{B(x,r)}\right)^{\frac{q(p-1)}{p-1-q}}}{r^n} \frac{dr}{r}.
$$
 (37)

Remark. Similar estimates hold for solutions in the inhomogeneous case $-\text{div}\mathcal{A}(x,\nabla u) = \sigma u^q + \mu$, with $W_{1,p}\mu$ on both sides [Verbitsky 2021].

 OQ

Existence of weak (renormalized) solutions

Theorem 22 (Cao-Verbitsky 2017)

Let $1 < p < n$ and $0 < q < p-1$. Let $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$. Then there *exists a nontrivial (super) solution u to (33) such that* lim inf_{$|x| \to +\infty$ $u(x) = 0$ *if and only if the following two conditions hold:*}

$$
\int_{1}^{\infty} \left(\frac{\sigma(B(0,r))}{r^{n-p}} \right)^{\frac{1}{p-1}} \frac{dr}{r} < \infty,
$$
 (38)

$$
\int_{1}^{\infty} \frac{\left(\varkappa_{B(0,r)}\right)^{\frac{q(p-1)}{p-1-q}}}{r^{\prime p-p}} \frac{dr}{r} < \infty. \tag{39}
$$

In this case any nontrivial solution u satisfies global estimates (37)*.*

Remark. The upper estimate in (37) is proved in [Cao-Verbitsky 2017] for the minimal solution only. True for all solutions [Verbitsky 2021].

K ㅁ ▶ K @ ▶ K 혼 ▶ K 혼 ▶ │ 혼 │ ⊙ ٩.⊙

Existence of $W^{1,p}_{loc}$ solutions

If we wish to find a solution \bm{u} in $\bm{W^{1,p}_{\text{loc}}}(\mathbb{R}^{\bm{n}})$, then an additional local version of the condition for finite energy solutions is needed:

$$
\int_{B} \left(\mathsf{W}_{1,p} \sigma_B \right)^{\frac{(1+q)(p-1)}{p-1-q}} d\sigma < \infty,\tag{40}
$$

for every ball B in \mathbb{R}^n .

Theorem 23 (Cao-Verbitsky 2017)

Under the assumptions of the previous theorem, there exists a weak solution $u \in W^{1,p}_{loc}(\mathbb{R}^n)$ *to (33) such that* $\liminf_{|x| \to +\infty} u(x) = 0$ *if and only if conditions* (38)*,* (39) *and* (40) *hold. Moreover, global pointwise estimates* (37) *hold for all nontrivial solutions.*

K □ ▶ K @ ▶ K 로 ▶ K 로 ▶ _ 로 _ K 9 Q (Ŷ

Hessian equations and potential estimates [Trudinger-Wang, 1999; Labutin 2003] Let F_k ($k = 1, 2, ..., n$) be the *k*-Hessian operator defined by

$$
F_k[u] = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \lambda_{i_1} \cdots \lambda_{i_k},\tag{41}
$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of the Hessian matrix $D^2 u$ on \mathbb{R}^n . In other words, $F_k[u]$ is the sum of the $k \times k$ principal minors of D^2u . An upper semicontinuous function $u : \Omega \to [-\infty, \infty)$ is *k*-convex in Ω if $F_k[q] \geq 0$ for any quadratic polynomial *q* such that $u - q$ has a local finite maximum in Ω . A function $\boldsymbol{\mu} \in \textit{\textsf{C}}_{\text{loc}}^2(\Omega)$ is \boldsymbol{k} -convex iff

$F_j[u] \geq 0$ in $\Omega, j = 1, \ldots, k$.

To a *k*-convex function *u*, we associate a *k*-Hessian measure *µ* such that $F_k[u] = \mu$ in the viscosity sense. The following pointwise estimates hold [Labutin 2003], [Trudinger-Wang 2002] ([Phuc-Verbitsky 2008] on R*n*):

$$
u(x) \approx -W_{\frac{2k}{k+1},k+1}\mu(x), \quad x \in \mathbb{R}^n.
$$

Hessian Equations

Here Wolff's potential is defined by

$$
W_{\frac{2k}{k+1},k+1}\sigma = \int_0^\infty \left(\frac{\sigma(B(x,r))}{r^{n-2k}}\right)^{\frac{1}{k}} \frac{dr}{r}, \quad x \in \mathbb{R}^n,
$$

where $k < \frac{n}{2}$. (There are no nontrivial solutions on \mathbb{R}^n if $k \geq \frac{n}{2}$.) Consider the Hessian equation for *k*-convex functions *u* such that $\liminf_{|x|\to+\infty} u(x)=0$:

$$
F_k[u] = \sigma |u|^q, \quad x \in \mathbb{R}^n,
$$
 (42)

in the sub-natural growth case $0 < q < k$. Then the previous theorems have complete analogues with Wolff's potential $\mathsf{W}_{\frac{2k}{k+1},k+1}$ in place of $W_{1,p}$ for the *p*-Laplacian Δ_p .

K □ ▶ K @ ▶ K 로 ▶ K 로 ▶ _ 로 _ K 9 Q (Ŷ

Hessian equations

Theorem 24 (Cao-Verbitsky 2017)

 \mathcal{L} *et* $1 \leq k < \frac{n}{2}$ and $0 < q < k$. Let $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$, and for every *compact set* $\mathbf{F}^{\top} \subset \mathbf{R}^n$,

$$
\sigma(F) \leq C \operatorname{cap}_{k}(F) \approx \operatorname{Cap}_{\frac{2k}{k+1},k+1}(F).
$$

Then there exists a positive solution u to (42) such that $\liminf_{|x| \to +\infty} u(x) = 0$, and

$$
C_1(W_{\frac{2k}{k+1},k+1}\sigma)^{\frac{k}{k-q}}\leq -u\leq C_2\left(W_{\frac{2k}{k+1},k+1}\sigma+(W_{\frac{2k}{k+1},k+1}\sigma)^{\frac{k}{k-q}}\right),
$$

provided $W_{\frac{2k}{k+1},k+1}\sigma \not\equiv +\infty$. Otherwise there are no nontrivial solutions.

Remark. There are complete analogues of the bilateral estimates by means of nonlinear potentials defined in terms of \mathcal{H}_B in the general case.

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ K) Q (V

Proof of bilateral pointwise estimates

We now give a proof of bilateral pointwise estimates [Verbitsky 2021],

$$
u(x) \approx (W_{1,p}\sigma(x))^{\frac{p-1}{p-1-q}} + \int_0^\infty \frac{(\varkappa(B(x,r)))^{\frac{q(p-1)}{p-1-q}}}{r^{n-p}} \frac{dr}{r}
$$

+ W_{1,p}\mu(x), (43)

for all nontrivial solutions of the equation

 div*A*(*x,* ^r*u*) = *u^q* ⁺ *^µ* in ^R*ⁿ ,* lim inf *x*!1 *u*(*x*)=0*,* (44)

in the case $0 < q < p-1$, where $\mu, \sigma \in \mathcal{M}^+(\mathbb{R}^n)$.

Remark. A proof of the lower estimate for all solutions, along with the upper estimate in (43) in the case $\mu = 0$ for the minimal solution only was provided in [Cao-Verbitsky 2017].

K □ ▶ K f R K H Y Y A H Y Y Y A Q (Y Q Q Q

Proof of bilateral pointwise estimates

Homogeneous equations

We first consider the case $\mu = 0$, that is, nontrivial solutions to the homogeneous equation

$$
-\operatorname{div} \mathcal{A}(x,\nabla u)=\sigma u^{q} \quad \text{in } \mathbb{R}^{n}, \qquad \liminf_{x\to\infty} u(x)=0. \qquad (45)
$$

Let $1 < p < \infty$, $0 < \alpha < \frac{n}{p}$, and $0 < q < p-1$. Let $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$. For simplicity, the Wolff potential $W_{\alpha,p}\sigma$ will be denoted by $W\sigma$, i.e.,

$$
W\sigma(x)=\int_0^\infty\left[\frac{\sigma(B(x,t))}{t^{n-\alpha p}}\right]^{\frac{1}{p-1}}\frac{dt}{t},\quad x\in\mathbb{R}^n.\qquad(46)
$$

We denote by \times the least constant in the weighted norm inequality

$$
\|\mathsf{W}\nu\|_{\mathsf{L}^q(\mathbb{R}^n,d\sigma)}\leq \varkappa \nu(\mathbb{R}^n)^{\frac{1}{p-1}},\quad \forall \nu\in\mathcal{M}^+(\mathbb{R}^n).
$$
 (47)

K □ ▶ K fी ▶ K 로 ▶ K 로 ▶ _ 도 _ K 이 Q (Q

Intrinsic potentials

Remark. It is easy to see using the Kilpeläinen-Maly theorem that the embedding constant α in the case $\alpha = 1$ is equivalent to the constant κ in the inequality

$$
\|\phi\|_{L^{q}(\mathbb{R}^n,d\sigma)}\leq\kappa\|\mathrm{div}\mathcal{A}(x,\nabla\phi)\|^{\frac{1}{p-1}},\qquad(48)
$$

for all A-superharmonic $\phi > 0$ which vanish at ∞ .

We will need a localized version of inequality (47) for $\sigma_B = \sigma|_B$, where **B** is is a ball in \mathbb{R}^n , and $\varkappa(B)$ is the least constant in

$$
\|\mathsf{W}\nu\|_{\mathsf{L}^q(\mathbb{R}^n,d\sigma_B)}\leq \varkappa(B)\,\nu(\mathbb{R}^n)^{\frac{1}{p-1}},\quad \forall \nu\in\mathcal{M}^+(\mathbb{R}^n).
$$
 (49)

The intrinsic potential of Wolff type $K\sigma = K_{\alpha,p,q}\sigma$ is defined in terms of ${\cal H}(B(x,t))$, the least constant in (49) with $B = B(x,t)$:

$$
\mathsf{K}\sigma(x)=\int_0^\infty\left[\frac{\varkappa(B(x,t))^{\frac{q(p-1)}{p-1-q}}}{t^{n-\alpha p}}\right]^{\frac{1}{p-1}}\frac{dt}{t},\quad x\in\mathbb{R}^n.\qquad(50)
$$

K □ ▶ K f R K H Y Y A H Y Y Y A Q (Y Q Q Q

Intrinsic potentials

It is easy to see that $K\sigma \not\equiv \infty$ if and only if

$$
\int_{a}^{\infty} \left[\frac{\varkappa(B(0,t))^{\frac{q(p-1)}{p-1-q}}}{t^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dt}{t} < \infty, \qquad (51)
$$

for any (equivalently, all) $a > 0$, provided $\varkappa(B) < \infty$ for all balls B . This is similar to the condition $W\sigma \not\equiv \infty$, which is equivalent to

$$
\int_{a}^{\infty} \left[\frac{\sigma(B(0,t))}{t^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dt}{t} < \infty.
$$
 (52)

Let $1 < p < \infty$, $0 < \alpha < \frac{n}{p}$, and $0 < q < p-1$. Let us fix $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$. We start with some estimates of solutions to the equation

$$
u(x) = W(u^q d\sigma)(x), \quad u \ge 0, \quad x \in \mathbb{R}^n. \tag{53}
$$

K □ ▶ K @ ▶ K 로 ▶ K 로 ▶ _ 로 _ K 9 Q (Ŷ

Integral equations with Wolff potentials

Remarks. In equation (53), $u < \infty$ $d\sigma$ -a.e. (or equivalently $u \in L^q_{\text{loc}}(\mathbb{R}^n, \sigma)$), and also (53) is understood $d\sigma$ -a.e.

In this case, we can choose a representative \tilde{u} such that $\tilde{u} = u \, d\sigma$ -a.e., defined for all $x \in \mathbb{R}^n$ by $\tilde{u}(x) := W(u^q d\sigma)(x)$. Then clearly $\tilde{u}(x) = W(\tilde{u}^q d\sigma)(x)$ for all $x \in \mathbb{R}^n$, and \tilde{u} is a solution to (53) defined everywhere on R*n*.

We will always use such representatives, denoted simply by *u*, so that (53) is considered everywhere. Our goal is to give bilateral pointwise estimates of solutions to $u(x) = W(u^q d\sigma)(x)$ for all $x \in \mathbb{R}^n$ where $u(x) < \infty$.

We also treat the corresponding **subsolutions** $u \geq 0$ such that

$$
u(x) \leq W(u^q d\sigma)(x) < \infty, \quad x \in \mathbb{R}^n,
$$
 (54)

and **supersolutions** $u \geq 0$ such that

$$
\mathsf{W}(u^q d\sigma)(x) \leq u(x) < \infty, \quad x \in \mathbb{R}^n, \tag{55}
$$

considered $d\sigma$ -a.e., and at every $x \in \mathbb{R}^n$ where these inequalities hold.

Integral equations with Wolff potentials For any $\nu \in \mathcal{M}^+(\mathbb{R}^n)$ ($\nu \neq 0$) such that $W\nu \not\equiv \infty$, we set

$$
\phi_{\nu}(x) := W\nu(x) \left(\frac{W[(W\nu)^q d\sigma](x)}{W\nu(x)} \right)^{\frac{p-1}{p-1-q}}, \quad x \in \mathbb{R}^n, \qquad (56)
$$

where we assume that $W\nu(x) < \infty$. Next, for $x \in \mathbb{R}^n$, we set

$$
\phi(x):=\sup\{\phi_{\nu}(x):\ \nu\in\mathcal{M}^+(\mathbb{R}^n),\ \nu\neq 0,\ W\nu(x)<\infty\}.\quad (57)
$$

Theorem 25

Any nontrivial solution $u > 0$ to (53) satisfies the estimates

$$
C \phi(x) \leq u(x) \leq \phi(x), \qquad x \in \mathbb{R}^n, \tag{58}
$$

where C *is a positive constant which depends only on* p *,* q *,* α *and n. Moreover, the upper bound in* (58) *holds for any* subsolution *u, whereas the lower bound in* (58) *holds for any nontrivial* supersolution *u.*

The proof of Theorem 25 is based on a series of lemmas.

Lemma 1

 \mathcal{L} *et* $1 < p < \infty$, $0 < \alpha < \frac{n}{p}$, and $0 < q < p-1$. Let $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$. *Suppose u is a subsolution to* (53)*. Then*

$$
u(x) \leq \phi(x), \qquad x \in \mathbb{R}^n, \tag{59}
$$

provided $W(u^q d\sigma)(x) < \infty$. In paticular, (59) holds $d\sigma$ -a.e.

Proof. Setting $d\nu = u^q d\sigma$, we see that $u(x) \le W\nu(x) < \infty$, and consequently $W\nu(x) \leq W[(W\nu)^q d\sigma](x)$. Then clearly,

$$
\phi_{\nu}(x):=W\nu(x)\,\left(\frac{W[(W\nu)^q d\sigma](x)}{W\nu(x)}\right)^{\frac{p-1}{p-1-q}}\geq W\nu(x).
$$

◀ㅁ▶ ◀♬▶ ◀롣▶ ◀롣▶ │ 롣│ ⊙٩⊙

Hence,

$$
u(x)\leq \phi_{\nu}(x),\quad x\in\mathbb{R}^n,
$$

which yields immediately (59).

Lemma 2

Let $\nu, \sigma \in \mathcal{M}^+(\mathbb{R}^n)$. Then there exists a positive constant **C** which *depends only on* p *,* q *,* α *, and* n *such that*

$$
W[(W\nu)^q d\sigma](x) \leq C (W\nu(x))^{\frac{q}{p-1}} \times \left[W\sigma(x) + (K\sigma(x))^{\frac{p-1-q}{p-1}}\right], \quad x \in \mathbb{R}^n.
$$
 (60)

Proof. Without loss of generality we may assume that $\nu \neq 0$ and $W\nu(x) < \infty$. For $x \in \mathbb{R}^n$, we have

$$
\mathsf{W}[(\mathsf{W}\nu)^q d\sigma](x) = \int_0^\infty \left[\frac{\int_{B(x,t)} (\mathsf{W}\nu(y))^q d\sigma(y)}{t^{n-\alpha p}} \right]_0^{\frac{1}{p-1}} \frac{dt}{t}.
$$
 (61)

For $y \in B(x, t)$, we have that $B(y, r) \subset B(x, 2t)$ if $0 < r \le t$, and $B(y, r) \subset B(x, 2r)$ if $r > t$. Consequently, for $y \in B(x, t)$,

$$
W\nu(y) = \int_0^t \left[\frac{\nu(B(y,r))}{r^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dr}{r} + \int_t^\infty \left[\frac{\nu(B(y,r))}{r^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dr}{r}
$$

$$
\leq \int_0^t \left[\frac{\nu(B(y,r) \cap B(x,2t))}{r^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dr}{r} + \int_t^\infty \left[\frac{\nu(B(x,2r))}{r^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dr}{r}
$$

$$
\leq W\nu_{B(x,2t)}(y) + c \, W\nu(x), \quad \text{where } c = 2^{\frac{n-\alpha p}{p-1}}. \text{ Hence,}
$$

$$
\int_{B(x,t)} (W\nu(y))^q d\sigma(y) \leq \int_{B(x,t)} (W\nu_{B(x,2t)}(y))^q d\sigma(y) + c^q (W\nu(x))^q \sigma(B(x,t)).
$$

K □ ▶ K 何 ▶ K 글 ▶ K 글 ▶ │ 글 │ K 9 Q (Y

Notice that by (49),

$$
\int_{B(x,t)} \left(W \nu_{B(x,2t)}(y) \right)^q d\sigma(y) \leq \kappa (B(x,t))^q \nu(B(x,2t))^{\frac{q}{p-1}}.
$$

Combining the preceding estimates, we deduce

$$
\int_{B(x,t)} (W\nu(y))^q d\sigma(y) \leq \kappa (B(x,t))^q \nu(B(x,2t))^{\frac{q}{p-1}} + c^q (W\nu(x))^q \sigma(B(x,t)).
$$

It follows from (61) and the preceding estimate,

$W[(W\nu)^q d\sigma](x)$

$$
\leq c \int_0^{\infty} \left[\frac{\kappa (B(x,t))^q \nu (B(x,2t))^{\frac{q}{p-1}}}{t^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dt}{t}
$$

+ c \left(W \nu(x) \right)^{\frac{q}{p-1}} \int_0^{\infty} \left[\frac{\sigma (B(x,t))}{t^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dt}{t} = c (1 + 11).

By Hölder's inequality with exponents $\frac{p-1}{p-1}$ *p*-1-q and $\frac{p-1}{q}$, we estimate

$$
I = \int_0^\infty \left[\frac{\kappa (B(x,t))^q \nu (B(x,2t))^{\frac{q}{p-1}}}{t^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dt}{t}
$$

$$
\leq \left(\int_0^\infty \left[\frac{\nu (B(x,2t))}{t^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dt}{t} \right)^{\frac{q}{p-1}}
$$

$$
\times \left(\int_0^\infty \left[\frac{\kappa (B(x,t))^{\frac{q(p-1)}{p-1-q}}}{t^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dt}{t} \right)^{\frac{p-1-q}{p-1}}
$$

$$
= 2^{\frac{q(n-\alpha p)}{(p-1)^2}} \left(\mathsf{W}\nu(x) \right)^{\frac{q}{p-1}} \left(\mathsf{K}\sigma(x) \right)^{\frac{p-1-q}{p-1}}.
$$

Kロト K団 K K ミト K ミト / ミー のQ (V)

Clearly,

$$
II = (W\nu(x))^{\frac{q}{p-1}} \int_0^\infty \left[\frac{\sigma(B(x,t))}{t^{n-\alpha p}} \right]^{\frac{1}{p-1}} \frac{dt}{t} = (W\nu(x))^{\frac{q}{p-1}} W\sigma(x).
$$

We deduce

$$
W[(W\nu)^q d\sigma](x) \leq c(1+11)
$$

\$\leq c (W\nu(x))^{\frac{q}{p-1}} [W\sigma(x) + (K\sigma(x))^{\frac{p-1-q}{p-1}}].

This completes the proof of (60).

- 重り

 OQ

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Lemma 3

 \mathcal{L} *et* $1 < p < \infty$, $0 < \alpha < \frac{n}{p}$, and $0 < q < p-1$. Let $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$. *Then there exist positive constants* C_1 , C_2 *which depend only on* **p**, **q**, α *and n such that*

$$
C_1 \phi(x) \leq (W\sigma(x))^{\frac{p-1}{p-1-q}} + K\sigma(x) \leq C_2 \phi(x), \qquad (62)
$$

where the lower estimate holds for all $x \in \mathbb{R}^n$, whereas the upper estimate *holds provided* $W\sigma(x) < \infty$ *and* $K\sigma(x) < \infty$ *. If* $W\sigma \not\equiv \infty$ and $K\sigma \not\equiv \infty$, then $\phi < \infty$ $d\sigma$ -a.e., and the upper *estimate in* (62) *holds* $d\sigma$ -a.e.

 Ω

- ◆ 伊 ▶ → 三 ▶ → 三 ▶ → 三三 三

Proof. To prove the upper estimate in (62), notice that, if $W\sigma \not\equiv \infty$ and $K\sigma \not\equiv \infty$, it follows from [Cao-V. 2017], Theorem 4.8, that there exists a (minimal) solution *u* to (53) such that

$$
c_1 \left[\left(W \sigma(x) \right)^{\frac{p-1}{p-1-q}} + K \sigma(x) \right] \leq u(x) \leq c_2 \left[\left(W \sigma(x) \right)^{\frac{p-1}{p-1-q}} + K \sigma(x) \right], \quad x \in \mathbb{R}^n,
$$
\n(63)

where c_1 , c_2 are positive constants which depend only on p , q , α and n . The lower bound in (63) holds for any nontrivial supersolution *u* as was shown in [Cao-V. 2017], Theorems 4.8, $d\sigma$ -a.e., and in fact at every $x \in \mathbb{R}^n$ where $W(u^q d\sigma)(x) \le u(x)$, as is clear from the proof. For the **minimal** solution *u*, we have $u(x) = W(u^q d\sigma)(x) < \infty$, provided $W\sigma(x) < \infty$ and $K\sigma(x) < \infty$, by the upper estimate in (63).

K □ ▶ K f P ★ ミ ▶ K ミ ▶ │ ミ │ め Q (Ŷ

Thus, by Lemma 1 and the lower bound in (63), we deduce

$$
c_1 \left[\left(\mathsf{W}\sigma(x) \right)^{\frac{p-1}{p-1-q}} + \mathsf{K}\sigma(x) \right] \leq u(x) \leq \phi(x).
$$

If $\mathsf{W}\sigma\not\equiv \infty$ and $\mathsf{K}\sigma\not\equiv \infty$, then as indicated above, there exists a solution *u* to (53) such that $u = W(u^q d\sigma) < \infty$ $d\sigma$ -a.e., and (63) holds $d\sigma$ -a.e. It follows that $\mathsf{W}\sigma<\infty$ and $\mathsf{K}\sigma<\infty$ $d\sigma$ -a.e., and hence $\phi < \infty$ $d\sigma$ -a.e. by the lower estimate in (62) (Lemma 2). Letting $d\nu = u^q d\sigma$, we deduce $u \leq \phi_{\nu} \leq \phi d\sigma$ -a.e., so that (62) holds $d\sigma$ -a.e. as well. The proof of Lemma 3 is complete.

Proof of Theorem 25. The upper bound in (58) for any subsolution *u* follows from Lemma 1, whereas the lower bound for any nontrivial supersolution *u* follows from the lower bound in (63) and Lemma 3:

$$
u(x) \geq c_1 \left[\left(\mathsf{W}\sigma(x) \right)^{\frac{p-1}{p-1-q}} + \mathsf{K}\sigma(x) \right] \geq c_1 \, C_1 \, \phi(x), \quad x \in \mathbb{R}^n.
$$

 $\left\{ 0 \leq x \leq 1 \leq x \leq 1 \right\}$